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Abstract
Using an upper-lower solution method, we give estimates for the maximal existence
intervals of solutionsto classical Riccati differential equations that arise in linear-quadratic regular
problems, differentiad games, risk-sensitive control and H°°-control. Some of the results
presented here are new while some are generaizations of existing results established by other
methods.

1. Introduction

In this paper we obtain estimates of the maximal existence interval of the solution to the
differential Riccati equation

P +A"P+ PA+1I(P)+Q — PBP=0,t <t;,P(t;) = Py, (D

which arises in many problems including linear quadratic regulator problems, differentia games,
H*°-control, and risk-sensitive control. Here P’ denotes the derivative of P and A" denotes the
transpose of A while A, B, ) are bounded and measurable n x n matrix functions on (—oo, ¢,
and IT is a linear map that arises from the presence of state-dependent and/or jump noise in the
state equation; see [1] [2] [9] [13] [14] [12]. Equation (1) plays a central role in these problems
because the existence of its solution in an interval I determines the solutions to these problemsin
horizon I. It is well-known that the solution P(t) to (1) may "blow-up" at some point t*; that is,
P(t) satisfies the equation (1) on (t*,t] but P(t) does not have a limit as ¢t — t*, ¢ > t*.
Obvioudly, (t*,%;] is the maximal existence interval of the solution to (1). For a given interval I,
equation (1) has a solution on I if and only if I C (t*,¢;]. The purpose of this paper is to prove
an upper-lower solution theorem and to estimate the interval (¢*,¢;] by comparison method for
differential equations.

The definitions and an interpretation (Theorem 1) of upper and lower solutions are given
in Section 2. Section 2 also contains an upper-lower solution theorem (Theorem 4), a necessary
and sufficient condition for existence of the solution to (1) on a given interva (Corollary 5), and
the relationship between the maximal existence intervals of comparable equations (Proposition 6).
In Section 3, we obtain severa estimates for the maximal existence interval of (1) by constructing
comparison equations of different types. In Section 4, we use the upper-lower solution theorem to
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prove monotonicity of the solution to (1) and give a necessary and sufficient condition for the
existence of a solution to the algebraic equation associated with (1).

Equation (1) with IT = O has been extensively studied; see [1] [3] [4] [8][10] [11] [16]
and the references therein. Equation (1) with the term II has been studied in several papers
including [15] [11] [5] [7] [6]. This paper appears be the first use of upper and lower solutionsin
studies of equation (1), and it appears to be more natural and more direct way to address many
issues of Riccati equations. For example, the common (often natural) assumption that @ > 0,
P; > 0 inamost al of the existing works can be replaced by that there exists a lower solution,
which is much weaker. The results in this paper are either new or are generalizations of existing
results established using other methods.

2. Theorems of Comparison and Upper-L ower Solutions

Notation. Denote by S" the set of all real symmetric n x n matrices. We use G > H to denote
that G — H is poditive semidefinite and G > H to denote that G — H is positive definite. For
IT:S" — S" wewriteIl > Oif II(P) > Ofor every P > 0. In this section we assume

{I = [to, ts] Or (—oo, ] isarbitrary but fixed, @
A E LOO(I’ R’I},X’H,)’B’Q E LOO(I’ S’H,)’ H e LOO(S’IL’S’IL)’ H 2 O‘

For a subspace X of a matrix space (e.g, of R™** with the inner product (A4, B) = tr(A”B)),
denote by L>°(I, X) the space of al bounded and measurable matrix functions from I to X.
Smilaly, L“°(I,X) denotes the space of al matrix functions P € L>(I,X) with
P’ € L>(1, X). For simplicity, we will write "@Q > 0" or "Q > 0 in I" for "Q(t) > 0 for every
t € I". For convenience we use

Ric(P) = Ric(A,B,Q,1I; P) = A"P+ PA+1I(P) + Q — PBP.
Thus equation (1) becomes P’ + Ric(P) = 0.
Definition 1. Suppose P € LY (I;S").
P isan upper solutionto (1) in [ if
P'+Ric(P) <0,t € I; P(ty) > Ps.
Pisalower solutionto (1) in I if
P'+Ric(P) > 0,t € I; P(ty) < Py.

P isasolution if it is both an upper solution and a lower solution. An upper or lower solution is
strict if at least one of the inequalities in the definition is strict. When A, B, Q, and IT are al time-
invariant, an upper solution and a lower solution to the algebraic equation Ric(P) = 0 can be
defined in Smilar way.

Remark 1. In literature, a problem with @, Py > 0 is sometimes referred as a standard problem.
Note that @, Py > 0 is equivalent to that P = 0 is a lower solution to (1). Correspondingly,
Q, Py <0Oisequivalent tothat P = 0 isan upper solution to (1).
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An upper solution and a lower solution can be interpreted meaningfully in terms of the
problems where the equation arises. As an example, assume that B = FF' — GG' and
II(P) = C*PC for some F,G,C € L*(I; R"™*™) in (1) and consider the following zero-sum
differential game problem:

Example Problem 1. Fix (s,z) € I x R". Let W be a standard Brownian motion on a
probability space over [s,t] with W(s) = 0 dmost surely. Let UW][s, t ;] be the set of admissible
pairs (u,w) of R"-valued, square integrable processes adapted with the o-field generated by
W(-).For (u,w) € UW][s,t;], let x be the solution to the following state equation

dr = (Az + Fu+ Gw)dt + CxdW, s <t < ty; 2(s) = z. 3

Define the cost J (u, w) as
tf
J(u,w) = E{xT(tf)Pfx(tf) + / (2" Qz +u'u — wTw)dt},

where E{} represents the expectation of the enclosed random variable. The problem is to find
(u>®,w>) € UW][s,ts] such that Max,Min,J(u,w) = J(u™®,w™). Note that if C =0, u,w
and x are non-random, and W and E are then irrelevant. For this problem we have

Theorem 1.

(i) If P isalower solutionto (1) in [s,ty], then for each w, J (u, w) is bounded from below.

(ii) If P isan upper solutionto (1) in [s, ¢ ;] then for each u,J (u, w) is bounded from above.

(iii) If P is a solution to (1) in [s,t/], then there exists (u™,w™) such that J(u™,w*>) =
Max,Min, J (s, u,w) = z' P(s)z.

Proof. (i) Suppose P € L'>([s,ts],S") and (u,w) € UW][s,ts]. Let = be the solution to (3).
By the Fundamental Theorem of calculus and 1to's formula applied to = (¢) P(¢)x(t) we obtain

BLa (4 P(tr)oty)} — # Plo)z = B [ Lot (0P@s(t)de @

tf
= E/ [z"(P'+ A"P+ PA+ C"PC)z + 2u" F' Px + 2w" G" Px]dt.

Adding (4) to J (u, w) and completing the square, we obtain
J(u,w) = 2" P(s)z + E{a" (t;)(P(ty) — Pr)z(ts)}

= E/tfxT(P’ + A"P+ PA+C"PC+ Q)xdt
+ E/tf(QuTFTPx +20'G"Pr + u'u — w'w)dt
= E/tfxT(P’ + ATP+ PA+C"PC+ Q — PBP)zdt
+ E/tf(u + F'Pz) (u+ F'Px)dt — E/tf(w — G"Px) (w— G* Px)dt.

In case (i), we have that P(t;) < Py, P'+ Ric(P) > 0 and the last but one integral > 0.



Therefore,
tf
J(u,w) > 2" P(s)z — E/ (w — G"Pz)" (w — GT Pz)dt,

which is bounded with fixed w. Case (ii) is proved similarly. In case (iii), we have
J(u,w) — 2" P(s)z

= E/tf [(u+ F"Pz)" (u + F"Pzx) — (w — G"Pzx)" (w — G"Pz)]dt

Denote by x> the solution to (3) with v = —F?" Pz and w = G* Pz. Denote the corresponding
u and w by > and w™, respectively. It follows that for every w, we have

Min, J (u,w) < J(s,u™,w)
ty
= 2"P(s)z — E/ (w — G'Pz)" (w— G"Pz)dt < 2" P(s)z,

which implies that Max,Min,J(u,w) < z' P(s)z. On the other hand, it is obvious that
Max,Min, J (u,w) > Min,J (s, u, w™®) = z' P(s)z, and the proof of (iii) is complete.C]
Proposition 2. For each P, P, € LY*(I,S"), we have, with P = P, — P,
Ric(4,B,Q,1I; P,) — Ric(4,B,Q,1I; P,) = Ric(A — BP,, B,0,1I; P) (5)

or equivalently,

[A"Py + PLA+TI(P)+ Q — PLBP)| — [A"P, + PA+1I(P) + Q — P,BP)]

= (A— BPR)'P+ P(A— BP,)+1I(P) — PBP
Proof. This equdity follows by direct verification.[]
Remark 2. Equality (5) reveals an important and smple structure of equation (1). One
implication is that the difference of two solutions to (1) also satisfies an equation of the same
type. Another implication of (5) is that the assumption @, Py > 0 in most of the existing results
on Riccati equations can be replaced by the existence of alower solution, which is much weaker.

In fact, if P, is a lower solution to (1), i.e, Q2= Pj+ Ric(A,B,Q,1I; ) >0 and
Py(ty) < Py, thenby (5), that P, isasolutionto (1) if and only if P = P, — P, satisfies

P'+Ric(A— BP,B,Q2,11; P) = 0, P(t;) = Py — Py(ty). (6)

Equation (6) is standard because Q2 > 0 and Py — P»(t) > 0.

Proposition 3. Suppose A € L>*(I, R"™"),Q € L*>*(I,S"), and II € L>(S",S") is linear.
Then for each P(t;) € S" the equation
P +A"P+ PA+TI(P)+ Q=0 (7)

has a unique solution P € L'>(1,S"). If @ >0in I and P(tf) >0, then P> 0 in I.
Furthermore, if either Q > 0 or P(t;) > O isstrict, then P > 0in 1.
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Proof. Following the approach used in [15], let ®(¢, s) be the fundamental matrix of A, that is

%(I)(t, s) = AW)D(t, s), D(t,t) = A(t), tg < s, < t;.

Note that ®(¢,s) " = &(s,t) and %(I)(s,t) = —A(t)P(s,t). It followsthat (7) is equivaent to

ty
P(t) = <1>(tf,t)TP(tf)<I>(tf,t)+/ ®(s,t) {II(P(s)) + Q(s)}(s,t)ds (805
t
The Voltera equation (8) has a unique solution P, which can be found by successive
approximations; say, {P, : v =0,1,2,---} with P, =0. If @ >0inIand P(t;) >0, then
P,>0inIfordlv>0andt e I, whichimpliesthat P = lim,_, P,(t) > 0. If eéither @ > 0in

I'or P(ty) > 0isstrict, then

PH(t) = ®(ts, 1) P(tp)D(ts,t) + /lzf(I)(s,t)TQ(s)CI)(s,t)ds > 0. 9

t

It followsthat P(t) > P#(t) > 0inI.O

Theorem 4. (Upper-Lower Solution Theorem) Suppose that (P, P,) is a pair of upper-lower
solutionsto (1) in . Then

()P, > P inl,and P, > P, in [ if either P, or P, isgtrict.

(i) Equation (1) has a unique solution P with P, > P> P, in 1.

Proof. Let P= P, — P,. Proposition 2, applied to Q, = P + Ric(P,) — [P] + Ric(P,)] > 0,
implies that
P’ + Ric(A — BP,, B,Q,,1I; P) = 0.

This equation can be rewritten as alinear equation in P:
. 1
P+ Rlc(A — BP, — 5BP,O,@,H;P) =0.

Note that one of P, and P, is strict implies that either Q2 > 0 or P(t;) > 0 is strict. Thus the
results of (i) follow from Proposition 3.

For part (ii), by the local existence theory of ODE, equation (1) has a solution defined in
the largest interval; say, (7,t;] C 1. Part (a) impliesthat P, > P > P, in(7,t;]. Since P, and P,
are bounded in I, we have that P(7+ ) :fﬂﬂp(t) exists and Py(7) > P(t+ ) > Py(7). If

ty > 7 > ty, then the local existence theory of ODE again shows that the solution P could be
further extended to the left of ~. This would contradict the definition of 7. Therefore, 7 = tg and
P(t) existsin [ty, t,].00

A simple case of Theorem 4(a) is that if @), Py > 0 then the solution P to (1) satisfies
P > 0 because 0 isalower solution to (1).

Corollary 5. Equation (1) has a solution if and only if it has a pair of upper-lower solutions.
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Proof. If P isasolution, then (P, P) isa pair of upper-lower solutions. The converse is part of
Theorem 4 (b).d
Theorem 6. Supposefor i = 1,2, A;, B;, Q;,11; also satisfy (2). Let
E(P) = P' +Ric(A,B,Q,1I; P),

SQuppose that Py, P, € LY*°(I,S") satisfy

E(P) <&(P) S0<&(Ry) <E(R)INI, Pi(ty) > Pr > Py(ty) (10)
Then P, > P, inI and £(P) = 0 hasasolutionin I with P(t) = P.

Proof. The assumptions imply that (P, ) is a pair of upper-upper solutions of £(P) = 0. By
Theorem 4, P, > P, in] and £(P) = 0 has asolution with P(t;) = Py. O

3. Maximal Existence Intervals of a Riccati Equation

In this section we assume that A, B and @ satisfy (2) with I = (—o0,t;]. We will give
estimates for maximal existence interva for the solution to (1).

Denote by Ima(€) the maximal existence interval of the equation £(P) = 0 with given
P(ty). By Theorem 4,

Imax (€) D Dom(P;) N Dom(P;) (11ak)

for each pair (P, P,) of upper-lower solutions to (1), where Dom(P;) and Dom(FP,) are the
domains of P, and P, respectively. So each pair (P, P») of upper-lower solutionsto (1) gives an
estimate for Ima (€) and the approximation can be as accurate as desired if (P, P») can be found
to be close enough to the solution to (1).

On the other hand, Proposition 6 implies that
Imax(g) D) Imax(51752)a (12)

where Imax (€1, E2) = Imax (E1) N Imax (E2). We now use (12) to estimate Iq (€) by constructing
comparison equations (&;,&,) satisfying the conditions in Proposition 6. We will use the
following fact.

Proposition 7. If B € S”, then B = B, — B,,, where B

Iz

B, >0 and BpB'rL = 0.

Proof. We write B = T"RT, where T satisfies T"T = E and R = ( 01 (;% ) is diagonal

— 42

. . R, O 0 O
— T

with Ry, Ry > 0. Define B, = T' ( 0 0 0 Ry

B,, B, > 0and B,B, = 0.0

Iz

)TandB,,,/:TT( )T.ThenB:Bp—Bn,



First we consider the following matrix equations:

EW(P)=P +A"P+ PA+TI(P)+Q,+ PB,P =0,P(t;) = Py, (13ca)
P f fr

& (P =P 4+ AP+ PA+TI(P _QTJ,_PB’)P:()’P(t):_P” (14)
2 f f

where (Q,,Qy), (B, B,) and (Py,, Py,) are decompositions of (), B and Py, respectively, as
described in Proposition 7. Note that for all P € S™, £, (P) < E(P) < &11(P). So (12) implies
that Imax(g) D) Imax(glla 521).

Now let A\(-) and A(-) denote the minimum and maximum eigenvalues of a matrix,
respectively, and construct scalar comparison equations:

ewn(p) =p +aip’ + Bip+m =0, pty) = piy, (15)
Whereplf = A(pr), Q= A(B’n,)a 61 = A(A + A" + H(E))af)/l = A(Qp)

e22(p) = ' + ap” + fap + 72 = 0, p(ty) = pay, (16)

Wherepr = )\(_Pf’n,)! Qg = )‘(_Bp)a 62 = A(A + A" + H(E))afYQ = )‘(_Qn)
Note that the solution to (13) is positive semidefinite because 0 is a lower solution to (13).
Similarly, the solution to (15) is non-negative. For each scalar function p > 0, it is easy to see that
P = pE stisfies £(P) < &1 (P) < ep(p)E. Smilarly, the solution to (14) is negative
semidefinite because 0 is an upper solution to (14) and the solution to (16) is non-positive. For
each scalar function p < 0, P = pFE sdatisfies that £(P) > £1(P) > eqn(p)E. By (12), we have
thet Imax (€) D Imax (€11, E21) D Imax(e12, €22).

Finaly we construct scalar comparison equations with constant coefficients:

ei3(p) = p + ap® + Bisp+ 713 =0, p(ty) = piy (17)

eo3(p) = P + aozp”® + Bozp + Y3 = 0, p(ty) = pay (18)

where a3, B13 and -3 are the upper bounds of «, 5, and v, respectively, and aws, G253 and o3
are the lower bounds of «;, 5, and vy, respectively. Note that e;3(p) > e12(p) for every p > 0,
and ey3(p) < egn(p) for every p < 0. Therefore, by (12), we have

Imax(g) D Imax(€117€21) D) Imax(612; 622) D Imax(el?n 623)- (19)

Theorem 8. Relationships (19) give estimates for the maximal existence interval I (€) for the
solution to (1).

Example Problem 2. We illustrate the above construction by a simple example with

1 0 1 0 10 -1 0
A:(o 0)’32(0 —1>’Q:(0 1)’H:0’Pf:(o 1)'

10 0 0 0 0 L0
Hel’e Bp: (0 0)7 B'n/: (0 1)7 Q]):Q7 Q’IL:O7 Pf]): (0 1)7 Pf’IL: (0 0>’

(alaﬂlavlaplf) = (a137ﬂ137’7137p1f) = (1727 ]-7 1)7 (a27ﬂ27’727p2f) = (O~/237ﬁ2377237p2f) =
(—1,0,0, — 1). Itiseasy to find the explicit solutions. We have



P = diag[f(1), g(t)], where (1) = [¢*V* — 1] /[1 = V2 + (1+ v2) V%],
910) = [1 = S(20)]/c0(21), Iex(€) = (~.623225,0);

[
Py =diag[(e ™ —1)/2,9(t)], P = diag[f(t), —t], Imax(E11, Ea1) = (—.623225,0);
P2 =iz = (1 —2t) /(1 + 2t), poo = pa3 = —1; Imax (€12, €22) = Imax (€13, €23) = (—.5,0)

Note that the estimates are fairly close to the maximal existence interval Iina ().
Imax (€13, e23) can be calculated explicitly. We have

Proposition 9. The solution p;3(t) to (17) blows up at finite time ¢}, if and only if
() pry > r12 = (P13 £ /8% — darzyz) /(2c43) and

o0
. d
(||) I3 = / 5 P < o0.
py Q13" + B3p+ 713

In this case, t; — ti; = I13. Smilarly, the solution py3(¢) to (18) blows up at finite time ¢34 if
and only if
(iii) poy < 734 = (—Bo3 £ /% — daszez) /(2a93) and

, e d
(|V) I = / P < o0.
p2f

ag3p? + Bogp + Vo3

Inthiscase, t; — t53 = Is.

Proof. Suppose p;3 blows up at tj; € (—oo,ts). Since p13(t) > 0 and monotone (see Theorem
11 below), p13(t) — oo ast — ti; + . Furthermore, p, ¢ cannot be bounded from above by any
constant solution of (17); otherwise p;3(¢) would be bounded. So (i) must hold. It follows that
a13p® + Bisp + 113 > 0 for al p > p; ¢, which implies that the improper integral in (i) must be
finite. In this case, equation (17) can be written as

dp
aizp? + Bisp + M3

= —dt, t € (t}3, t5).

Integrating from ¢, to ¢, we have

00 dp
=t; —t],. (20)
/plf aizp? + Bisp + i3 S

Conversely if (i) and (ii) hold, then we define 75 by (20). Note that a3 > 0 cannot be O in this
case (otherwise the integra will not be finite). So a3 > 0, which implies that
a13p® + Bisp + 113 > 0 for p > py . Note that the solution py3(¢) to (17) satisfies

p13(t) dp
3 = tf —t.
by Qu3p® + Bisp+ 73

From thisit is easy to see that p;5(t) — oo ast — t}; + .Thiscompletes the proof about p;3. The
conclusions about py3 can be proved smilarly.[d
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Corollary 10. Suppose t* is the conjugate point of equation (1), thent; — t* > min{l;3, I»3}. In
other words, min{ I3, I3} isthe minimum horizon on which eguation (1) has a solution.

4. Infinite-Horizon and Algebraic Riccati Equations

In this section we assume that A, B and (Q are all constant matrices. We prove results on
the monotonicity of the solution to (1) and a necessary and sufficient condition for the existence
of a solution to the algebraic equation associated with (1).

Theorem 11 (Monotonicity of Solution). Suppose P is the solution of (1) in (t*,¢]. Then we
have

(@ Ric(P;) > 0ifandonlyif P isincreasingin (t*,¢,] ast decreases.

(b) Ric(Pr) < 0ifandonly if P isdecreasing in (t*,¢,] ast decreases.

Proof. If Ric(P;) > 0, then P; is a lower solution to (1). By Theorem 4, P(t) > P; for all
te(t,ty]. Fix a number 7>0 and consder the function P.(t)= P(t— r)
te (t*+7,ty + 7). P(t) isdso asolution to (1) with P(t;) = P(t; — ) > Py = P(t;). B
Theorem 4 again, P.(t) > P(t), or equivaently, P(t —7) > P(t), for al ¢t € (t* + 7 tf] and
every 7 > 0. So P(t) isincreasing in (t*,¢;] ast decreases. This proves (a). Part (b) is proved
smilarly by using the fact that P is an upper solution.[]

We now prove a necessary and sufficient condition for the existence of solutionsto
A"P+ PA+TI(P)+ Q- PBP=0 (21)

in the form of an intermediate value theorem; that is, between upper and lower constant solutions
to (21), there exists at |east one solution.

Theorem 12. Equation (21) has a solution P € S" if and only if there are Pys, Py € S",

Proof. The necessity is obvious. For sufficiency, consider equation (1) with Py = P;f, i = 1, 2.
Because P is an upper solution and P, is a lower solution to (1) in (—oo, /], by Theorem 4,
there exist solutions P;(t) in (—oo,ts] such that Py > P;(t) > P»(t) > P»s. By Theorem 11,
both P, and P, are monotone. It follows that for i = 1,2, P = lim,_,_ P;(t) exist, and both Py
and P are constant solutions to (21). [J

Infact, P and P, are respectively the maximal and minimal solutionsto (21) between P, ;

and P»¢. The properties of solutions to (21) and their relationship to stability and detectability in
terms of upper and lower solutions will be discussed in a separate paper.
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