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Abstract

 Using an upper-lower solution method, we give estimates for the maximal existence
intervals of solutions to classical Riccati differential equations that arise in linear-quadratic regular
problems, differential games, risk-sensitive control and -control. Some of the resultsL_

presented here are new while some are generalizations of existing results established by other
methods.

1. Introduction

 In this paper we obtain estimates of the maximal existence interval of the solution to the
differential Riccati equation

T � E T � T E � T � U � TFT œ !ß > Ÿ > ß T > œ Tw
0 0 0

X Ca b a b , (1)

which arises in many problems including linear quadratic regulator problems, differential games,
L T T E_ w-control, and risk-sensitive control. Here  denotes the derivative of  and  denotes theX

transpose of  while  are bounded and measurable  matrix functions on ,E EßFßU 8 ‚ 8 Ð�_ß > Ó0

and  is a linear map that arises from the presence of state-dependent and/or jump noise in theC
state equation; see [1] [2] [9] [13] [14] [12]. Equation (1) plays a central role in these problems
because the existence of its solution in an interval  determines the solutions to these problems inM
horizon . It is well-known that the solution  to (1) may "blow-up" at some point ; that is,M T > >a b ‡

T > Ð> ß > Ó T > > Ä > ß > � >a b a b satisfies the equation (1) on  but  does not have a limit as .‡ ‡ ‡
0

Obviously,  is the maximal existence interval of the solution to (1). For a given interval ,Ð> ß > Ó M‡
0

equation (1) has a solution on  if and only if . The purpose of this paper is to proveM M § Ð> ß > Ó‡
0

an upper-lower solution theorem and to estimate the interval  by comparison method forÐ> ß > Ó‡
0

differential equations.
 The definitions and an interpretation (Theorem 1) of upper and lower solutions are given
in Section 2. Section 2 also contains an upper-lower solution theorem (Theorem 4), a necessary
and sufficient condition for existence of the solution to (1) on a given interval (Corollary 5), and
the relationship between the maximal existence intervals of comparable equations (Proposition 6).
In Section 3, we obtain several estimates for the maximal existence interval of (1) by constructing
comparison equations of different types. In Section 4, we use the upper-lower solution theorem to

*This auther wishes to acknowledge the support of a Caterpillar Fellowship.
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prove monotonicity of the solution to (1) and give a necessary and sufficient condition for the
existence of a solution to the algebraic equation associated with (1).
 Equation (1) with 0 has been extensively studied; see [1] [3] [4] [8][10] [11] [16]C œ
and the references therein. Equation (1) with the term  has been studied in several papersC
including [15] [11] [5] [7] [6]. This paper appears be the first use of upper and lower solutions in
studies of equation (1), and it appears to be more natural and more direct way to address many
issues of Riccati equations. For example, the common (often natural) assumption that U   !ß
T   !0  in almost all of the existing works can be replaced by that there exists a lower solution,
which is much weaker. The results in this paper are either new or are generalizations of existing
results established using other methods.

2. Theorems of Comparison and Upper-Lower Solutions

Notation. Denote by ’8 the set of all real symmetric  matrices. We use  to denote8 ‚ 8 K   L
that  is positive semidefinite and  to denote that  is positive definite. ForK � L K � L K � L
C ’ ’À Ä8 8 we write . C C  T   ! T   !0 if for every In this section we assumea b

œ c dM œ > ß > Ð�_ß > Ó! 0 0 or  is arbitrary but fixed,
(2)

E − ßFßU ß −P Mß V − P Mß P ß ß   !Þ_ 8‚8 _ 8 _ 8 8a b a b a b’ ’ ’ C C

For a subspace  of a matrix space (\ Øe.g, of  with the inner product tr ),V EßFÙ œ E F8‚5 a bX

denote by  the space of all bounded and measurable matrix functions from  to .P Mß M \_a b\
Similarly,  denotes the space of all matrix functions  withP Mß T − P Mß"ß_ _a b a b\ \
T − P Mßw _a b\ U   ! U   ! M U >   !. For simplicity, we will write " " or "  in " for "  for everya b
> − M". For convenience we use

Ric Ric .a b a b a bT ´ EßFßUß à T œ E T � T E � T � U � TFTC CX

Thus equation (1) becomes Ric .T �w a bT œ !

Definition 1. Suppose T − MàP"ß_ 8a b’ .
T  is an upper solution to (1) in  ifM

T � Ÿ !ß > − Mà > Tw
0 0Ric  a b a bT T   .

T  is a lower solution to (1) in  ifM

T �   !ß > − Mà > T Þw
0 0Rica b a bT T Ÿ

T  is a is both an upper solution and a lower solution. An upper or lower solution issolution if it 
strict if at least one of the inequalities in the definition is strict. When and  are all time-EßFßUß C
invariant, an upper solution and a lower solution to the algebraic equation Ric  can bea bT œ !
defined in similar way.

Remark 1. In literature, a problem with  is sometimes referred as a Uß T   !0 standard problem.
Note that  is equivalent to that  is a lower solution to (1). Correspondingly,Uß T   ! T œ !0

Uß T Ÿ ! T œ !0  is equivalent to that  is an upper solution to (1).
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 An upper solution and a lower solution can be interpreted meaningfully in terms of the
problems where the equation arises. As an example, assume that  andF œ J J � KKX X

Ca b a bT œ G T G J ß Kß G − P Mà VX  for some  in (1) and consider the following zero-sum_ 8‚8

differential game problem:

Example Problem 1. Fix a b=ß D − M ‚ V [ . Let  be a standard Brownian motion on a8

probability space over c d a b c d= > = >ß [ = œ ! ß0 0 with  almost surely. Let  be the set of admissiblehj
pairs  of -valued, square integrable processes adapted with the -field generated bya b?ß A V8 5
[ † ?ß A − ßa b a b c d. For , let hj = > B0  be the solution to the following state equation

.B œ EB � � .> � GB.[ ß = Ÿ > Ÿ > à B = œ Da b a bJ ? KA 0 . (3)

Define the cost  asN ?ß Aa b
N ?ß A œa b I B > T B > � B UB � ? ? � A A .>œ �a b a b a b(X X X X

0 0 0

>

=

0

,

where Ief represents the expectation of the enclosed random variable. The problem is to finda b a b a b? ß A − N ?ß A œ N ? ß A_ _ _ _hjc d= >ß G œ ! ?ß A0  such that Max Min . Note that if , A ?

and  are non-random, and  and  are then irrelevant. For this problem we haveB [ I

Theorem 1.
(i) If  is a lower solution to (1) in , then for each ,  is bounded from below.T =ß > A N ?ß Ac d a b0

(ii) .If  is an upper solution to (1) in  then for each ,  is bounded from aboveT =ß > ? N ?ß Ac d a b0

(iii) If  is a solution to (1) in , then there exists  such that T =ß >c d0 a b a b? ß A ? ß A_ _ _ _N œ
Max Min .A ?N =ß ?ß A œ D T = Da b a bX

Proof. (i) Suppose T − P =ß > ß ?ß A − = >"ß_ 8
0 0a b a bc d ’  and . Let  be the solution to (3). hjc dß B

By the Fundamental Theorem of calculus and Ito's formula applied to  we obtainB > T > B >X a b a b a b
I B > T > B > � D T = D œ I B > T > B > .>

.

.>

œ I B T � E T � T E � G T G B � #? J T B � #A K T B .>

e f a b a b a b a ba b a b a b (
( c da b

X X X

X X X X X X X

0 0 0

>

=
>

=

w

0

0

. 

(4)

Adding (4) to  and completing the square, we obtainN ?ß Aa b
N ?ß A � D T = D � I B > T > � T B >

œ I B T � E T � T E � G T G � U B.>

� I #? J T B � #A K T B � ? ? � A A .>

œ I B T � E T � T E � G T G � U �

a b a b e fa ba b a ba b
( a b

( a b
( a b

X X

X X X

X X X X X X

X X X

0 0 0 0
>

=

w

>

=
>

=

w

0

0

0

TFT B.>

� I ? � J T B ? � J T B .> � I A � K T B A � K T B .>Þ( (a b a b a b a b> >

= =

0 0
X X X XX X

In case (i), we have that , Ric  and the last but one integral .T > Ÿ T T � T   !   !a b a b0 0
w



4
Therefore,

N ?ß A   D T = D � I A � K T B A � K T B .>ßa b a b a b a b(X X XX
>

=

0

which is bounded with fixed . Case (ii) is proved similarly. In case (iii), we haveA

N ?ß A � D T = D

œ I ? � J T B ? � J T B � A � K T B A � K T B .>

a b a b
( � ‘a b a b a b a b

X

X X X XX X
>

=

0

Denote by  the solution to (3) with  and . Denote the correspondingB ? œ �J T B A œ K T B_ X X

? A ? A Aß and  by  and , respectively. It follows that for every we have_ _

Min

,

?
_

>

=

N ?ß A Ÿ N =ß ? ß A

œ D T = D � I A � K T B A � K T B .> Ÿ D T = D

a b a b
a b a b a b a b(X X X XX

0

which implies that Max Min . On the other hand, it is obvious thatA ?N ?ß A Ÿ D T = Da b a bX

Max Min Min , and the proof of (iii) is complete.A ? ?
_N ?ß A   N =ß ?ß A œ D T = Da b a b a bX ¨

Proposition 2. For each , we have, with ,T ß T − P Mß T œ T � T" # " #
"ß_ 8a b’

Ric Ric Ric (5)a b a b a bEßFßUß à T � EßFßUß à T œ E � FT ßFß!ß à TC C C" # #

or equivalently,

c d c da b a ba b a b a bE T � T E � T � U � T FT � E T � T E � T � U � T FT

œ E � FT T � T E � FT � T � T FT

X X

X

" " " " " # # # # #

# #

C C

C

Proof. This equality follows by direct verification.¨

Remark 2. Equality (5) reveals an important and simple structure of equation (1). One
implication is that the difference of two solutions to (1) also satisfies an equation of the same
type. Another implication of (5) is that the assumption  in most of the existing resultsUß T   !0

on Riccati equations can be replaced by the existence of a lower solution, which is much weaker.
In fact, if  is a lower solution to (1), i.e., Ric  andT U ´ T � EßFßUß à T   !# # ##

w a bC
T > Ÿ T T T ´ T � T# 0 0 " " #a b , then by (5), that  is a solution to (1) if and only if  satisfies

T � E � FT ßFßU ß à T œ !ß T > œ T � T > Þw
# # 0 0 # 0Ric (6)a b a b a bC

Equation (6) is because  and standard U   ! T � T >   !Þ# 0 # 0a b
Proposition 3. Suppose  and  is linear.E − ß U ß −P Mß V − P Mß P ß_ 8‚8 _ 8 _ 8 8a b a b a b’ ’ ’C
Then for each the T > −a b0 ’8 equation

T �w E T � T E � T � U œX Ca b ! (7)

has a unique solution . If  0 in  and  , then  in .T − U   M T >   ! T   ! MP Mß"ß_a b’8 a b0

Furthermore, if either 0 or  is strict, then  in .U   T >   ! T � ! Ma b0
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Proof. Following the approach used in [15], let  be the fundamental matrix of , that isFa b>ß = E

`

`>
>ß = œ E > >ß = ß >ß > œ E > > Ÿ =ß > Ÿ > ÞF F Fa b a b a b a b a b, ! 0

Note that  and . It follows that (7) is equivalent toF F F Fa b a b a b a b a b>ß = œ =ß > =ß > œ �E > =ß >�" `
`>

T a b a b a b a b e f a b( a b a ba b> œ > ß > > ß > � =ß > T = � U = =ß > .=F F F C F0 0

>

>

X XT >a b0

0

(8b5)

The Voltera equation (8) has a unique solution , which can be found by successiveT
approximations; say,  with . , thene fT À œ !ß "ß #ß â T œ !/ / ! If  0 in  and  U   M T >   !a b0

T   ! M   > − M T œ T >   !/ / in  for all 0 and , which implies that . / lim>Ä_ a b If either 0 inU  

M T >   ! or  is strict, thena b0

T > ´ > ß > > ß > � =ß > U = =ß > .= � !Þ#a b a b a b a b a b a b(F F F F0 0

>

>

X XT >a b0

0

(9)

It follows that T >   T > �a b a b# ! M in . ¨

Theorem 4. (Upper-Lower Solution Theorem) Suppose that  is a pair of upper-lowera bT ß T" #

solutions to (1) in . ThenM
(i)  in  in if either  or  is strict.T   T T � T T T" # " # " #M M, and  
(ii) Equation (1) has a unique solution  with  in T T   T   T" # M .

Proof. Let . Proposition 2, applied to RicT œ T � T U ´ T � T � T �" # # #
w w
# "a b c dRic ,a bT   !"

implies that

T �w Ric .a bE � FT ßFßU ß à T œ !# # C

This equation can be rewritten as a linear equation in :T

T � E � FT � FTß!ß U ß à T œ !Þ
"

#
w

# #RicŒ �C

Note that one of  and  is strict implies that either  or  is strict. T T U   ! T >   !" # # 0a b Thus the
results of (i) follow from Proposition 3.
 For part (ii), by the local existence theory of ODE, equation (1) has a solution defined in
the largest interval; say, . Part (a) implies that  in . Since  and Ð ß Ó § M T   T   T Ð ß Ó T T7 7> >0 0" # " #

are bounded in , we have that  exists and . IfM T � œ T > T   T �   Ta b a b a b a b a b7 7 7 7lim
>Ä �

" #
7

>0 � � > T7 !, then the local existence theory of ODE again shows that the solution  could be
further extended to the left of . This would contradict the definition of . Therefore, 7 7 7 œ >0 and
T >a b>  exists in c d> ß! 0 .¨

 A simple case of Theorem 4(a) is that if  then the solution  to (1) satisfiesUß T   ! T0

T   ! ! because  is a lower solution to (1).

Corollary 5. Equation (1) has a solution if and only if it has a pair of upper-lower solutions.
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Proof. If  is a solution, then  is a pair of upper-lower solutions. The converse is part ofT T ß Ta b
Theorem 4 (b).¨

Theorem 6. Suppose for ,  also satisfy (2). Let3 œ "ß # E ß F ß U ß3 3 3 3C

X C

X C

a b a ba b a bT ´ T � EßFßUß à T

T ´ T � E ß F ß U ß à T

w

3 3 3 3 3
w

Ric ,
Ric .

Suppose that ,  satisfyT T − P Mß" #
"ß_a b’8

X X X Xa b a b a b a b a b a bT Ÿ T Ÿ ! Ÿ T Ÿ T Mß T >   T   T >" " " # # # " 0 0 # 0 in (10)

Then  in  and  has a solution in  with .T   T M T œ ! M T > œ T" # 0 0Xa b a b
Proof. The assumptions imply that  is a pair of upper-upper solutions of Bya b a bT ß T T œ !" # X . 
Theorem 4,  in  and  has a solution with .T   T M T œ ! T > œ T" # 0 0Xa b a b  ¨

3. Maximal Existence Intervals of a Riccati Equation

 In this section we assume that  and  satisfy (2) with . We will giveEß F U M œ Ð�_ß > Ó0

estimates for maximal existence interval for the solution to (1).

 Denote by  the maximal existence interval of the equation Mmaxa bX Xa bT œ ! with given
T >a b0 . By Theorem 4,

Mmaxa b a b a bX ¨ T � TDom Dom" # (11ak)

for each pair  of upper-lower solutions to (1), where Dom  and Dom  are thea b a b a bT ß T T T" # " #

domains of  and  respectively. So each pair  of upper-lower solutions to (1) gives anT T T ß T" # " #a b
estimate for  and the approximation can be as accurate as desired if  can be foundMmaxa b a bX T ß T" #

to be close enough to the solution to (1).

 On the other hand, Proposition 6 implies that

M Mmax maxa b a bX X X¨ ß" # , (12)

where M M M Mmax max max maxa b a b a b a bX X X X X" # " #ß ´ � . We now use (12) to estimate  by constructing
comparison equations  satisfying the conditions in . We will use thea bX X" #ß Proposition 6
following fact.

Proposition 7. If , then , where  and F − F œ F � F F ß F   !’8
: 8 : 8 F F œ !: 8 .

Proof. We write , where  satisfies  and  is diagonalF œ X VX X X X œ I V œ
V !
! �V

X X Œ �"

#

with . Define  and . Then V ß V   ! F œ X X F œ X X
V ! ! !
! ! ! V" # : 8

"

#

X XŒ � Œ � F œ F � F: 8,

F ß F   ! F F œ !: 8 : 8 and .¨
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 First we consider the following matrix equations:

X C"" : 8 0 0 :
wa b a b a bT œ T � E T � T E � T � U � T F T œ !ß T > œ TX (13ca)

X C#" 8 : 0 0 8
wa b a b a bT œ T � E T � T E � T � U � T F T œ !ß T > œ �TX (14)

where ,  and  are decompositions of  and , respectively, asa b a b a bU ß U F ß F T ß T Uß F T: 8 : 8 0 : 0 8 0

described in Proposition 7. Note that for all   . So (12) impliesT − ß T Ÿ T Ÿ T’ X X X8
#" ""a b a b a b

that .  M Mmax maxa b a bX X X¨ ß"" #"

 Now let  and  denote the minimum and maximum eigenvalues of a matrix,- Aa b a b† †
respectively, and construct scalar comparison equations:

/ : ´ : � : � : � œ !ß : > œ :

: œ T œ F ß œ E � E � I ß œ U
"# " " " 0 "0

w #

"0 0 : " 8 " " :

a b a ba b a b a b a ba b! " #

A ! A " A C # A

 , (15)
where , X

/ : ´ : � : � : � œ !ß : > œ :

: œ �T œ �F ß œ E � E � I ß œ �U
## # # # 0 #0

w #

#0 0 8 # : # # 8

a b a ba b a b a b a ba b! " #

- ! - " A C # -

, (16)
where , X

Note that the solution to (13) is positive semidefinite because  is a lower solution to (13).!
Similarly, the solution to (15) is non-negative. For each scalar function , it is easy to see that:   !
T œ :I T Ÿ T Ÿ / : I satisfies  . Similarly, the solution to (14) is negativeX Xa b a b a b"" "#

semidefinite because  is an upper solution to (14) and the solution to (16) is non-positive. For!
each scalar function ,  satisfies that . By (12), we have: Ÿ ! T œ :I T   T   / : IX Xa b a b a b#" ##

that .M M Mmax max maxa b a b a bX X X¨ ß ¨ / ß /"" #" "# ##

 Finally we construct scalar comparison equations with constant coefficients:

/ : ´ : � : � : � œ !ß : > œ :"$ "$ "$ "$ 0 "0
w #a b a b! " # (17)

/ : ´ : � : � : � : > œ :#$ #$ #$ #$ 0 #0
w #a b a b! " # œ !ß (18)

where  and  are the upper bounds of  and , respectively, and  and ! " # ! " # ! " #"$ "$ "$ " " " #$ #$ #$ß ß ß
are the lower bounds of  and , respectively. Note that  for every ,! " #" " " "$ "#ß / :   / : :   !a b a b
and  for every . Therefore, by (12), we have/ : Ÿ / : : Ÿ !#$ ##a b a b

M M M Mmax max max maxa b a b a b a bX X X¨ ß ¨ / ß / ¨ / ß /"" #" "# ## "$ #$ . (19)

Theorem 8.  Relationships (19) give estimates for the maximal existence interval for theMmaxa bX
solution to (1).

Example Problem 2. We illustrate the above construction by a simple example with

E œ ß F œ ß U œ ß œ !ß T œ Þ
" ! " ! " ! �" !
! ! ! �" ! " ! "Œ � Œ � Œ � Œ �C 0

Here     ,F œ ß F œ ß U œ Uß U œ !ß T œ ß T œ
" ! ! ! ! ! " !
! ! ! " ! " ! !: 8 : 8 0 : 0 8Œ � Œ � Œ � Œ �

a b a b a b a b a b! " # ! " # ! " # ! " #" " " "0 "$ "$ "$ "0 # # # #0 #$ #$ #$ #0ß ß ß : œ ß ß ß : œ "ß #ß "ß " à ß ß ß : œ ß ß ß : œa b�"ß !ß !ß � " Þ It is easy to find the explicit solutions. We have
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T œ 0 > ß 1 > ß 0 > œ / � " Î " � # � " � # / ß

1 > œ " � #> Î #> ß M œ �Þ'#$##&ß ! à

T œ / � " Î#ß 1

diag where 

sin cos

diag

c d a b ’ “ ’ “a b a b Š ‹È È
a b c d a b a b a ba b� ‘ˆ ‰ a b

# #> # #>

�#>

È È
max X

"" > ß T œ 0 > ß �> ß �Þ'#$##&ß ! à

: œ : œ " � #> Î " � #> ß : œ : œ �"à
#" "" #"

"# "$ ## #$ "# ## "$ #$

diagc d a ba ba b a b M

M M
max

max max

a ba b a b a bX Xß œ

/ ß / œ / ß / œ �Þ&ß !

Note that the estimates are fairly close to the maximal existence interval .Mmaxa bX

  can be calculated explicitly. We haveMmaxa b/ ß /"$ #$

Proposition 9. The solution  to (17) blows up at finite time  if and only if: > >"$ "$a b ‡

(i) : � < ´ � „ � % Î #"0 "ß#
#ˆ ‰È a b" " ! # !"$ "$ "$ "$"$  and

(ii) M ´ � _
.:

: � : �
"$

"$ "$ "$
(

:

_

#
"0

! " #
.

In this case, . Similarly, the solution  to (18) blows up at finite time  if> � > M : > >0
‡ ‡
"$ #$"$ #$œ a b

and only if
(iii) : � < ´ � „ � % Î ##0 $ß%

#ˆ ‰È a b" " ! # !#$ #$ #$ #$#$  and

(iv) M ´ � _
.:

: � : �
#$

#$ #$ #$
(

:

�_

#
#0

! " #
.

In this case, .> � > M0
‡
#$ #$œ

Proof. Suppose  blows up at  Since 0 and monotone (see Theorem: > − Ð�_ß > ÑÞ : >  "$ "$"$
‡

0 a b
11 below),  as . Furthermore, cannot be bounded from above by any: > Ä _ > Ä > �"$ "$a b ‡ :"0  
constant solution of (17); otherwise  would be bounded. So (i) must hold. It follows that: >"$a b
! " #"$ "$ "$: � : � � !#  for all , which implies that the improper integral in (ii) must be: � :"0

finite. In this case, equation (17) can be written as

.:
œ �.>ß > − > >

! " #"$ "$ "$
"$: � : �#

a b‡
0ß  .

Integrating from  to , we have> >‡
0"$

(
:

_

# 0
‡

"0

.:

: � : �
œ > � >

! " #"$ "$ "$
"$. (20)

Conversely if (i) and (ii) hold, then we define by (20). Note that 0 cannot be 0 in this>‡
"$ "$ !  

case (otherwise the integral will not be finite). So , which implies that!"$ � !
! " #"$ "$ "$ "$: � : � � !#  for . Note that the solution  to (17) satisfies: � : : >"0 a b

(
:

: >

# 0
"0

"$a b .:

: � : �
œ > � >Þ

! " #"$ "$ "$

From this it is easy to see that  as This completes the proof about  The: > Ä _ > Ä > � Þ : Þ"$ "$"$a b ‡

conclusions about  can be proved similarly.:#$ ¨
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Corollary 10. Suppose  is the conjugate point of equation (1), then min . In> > � >   M ß M‡ ‡

0 e f"$ #$

other words, min  is the minimum horizon on which equation (1) has a solution.e fM ß M"$ #$

4. Infinite-Horizon and Algebraic Riccati Equations

 In this section we assume that  and  are all constant matrices. We prove results onEß F U
the monotonicity of the solution to (1) and a necessary and sufficient condition for the existence
of a solution to the algebraic equation associated with (1).

Theorem 11 . (Monotonicity of Solution) Suppose  is the solution of (1) in . Then weT Ð> ß > Ó‡
0

have
(a)  Ric if and only if  is increasing in  as  decreases.a bT0   T Ð ß Ó >! > > ‡

0

(b) Ric if and only if  is decreasing in  as  decreases.a bT0 Ÿ T Ð> ß Ó >! > ‡
0

Proof. If , then  is a lower solution to (1). By Theorem 4,  for allRica b a bT   ! T >  0 T T0 0

> − Þ � ! T > ´ T > � ßÐ ß Ó> >‡
0  Fix a number  and consider the function 7 7‡a b a b

> − Ð ß Ó T > T > œ T > �   œ T >> � > � T‡
0 07 7 .  is also a solution to (1) with . By‡ 0 0 0a b a b a b a b* 7

Theorem 4 again, , or equivalently, , for all  andT >   T > T > �   T > > − Ð ß Ó‡a b a b a b a b7 > � >‡
07

every . So  is increasing in  as  decreases. This proves (a). Part (b) is proved7 � ! T > Ð ß Ó >a b > >‡
0

similarly by using the fact that .T0  is an upper solution¨

 We now prove a necessary and sufficient condition for the existence of solutions to

E T � T E � T � U � TFT œ !X Ca b (21)

in the form of an intermediate value theorem; that is, between upper and lower constant solutions
to (21), there exists at least one solution.

Theorem 12. Equation (21) has a solution  if and only if there are ,T − ß −’8
"0 #0T T ’8

T T"0 #0  Ÿ !   ! such that  , .X Xa b a bT T"0 #0

Proof. The necessity is obvious. For sufficiency, consider equation (1) with , .T œ T 3 œ "ß #0 30

Because  is an upper solution and  is a lower solution to (1) in , by Theorem 4,T T Ð�_ß > Ó"0 #0 0

there exist solutions  in  such that  . By Theorem 11,T > Ð�_ß > Ó T   T >   T >   T3 0 "0 " # #0a b a b a b
both  and  are monotone. It follows that for ,  exist, and both T T 3 œ "ß # T œ T > T" # >Ä�_ 33 "

‡ ‡lim a b
and  are constant solutions to (21). T#

‡ ¨

 In fact,  and  are respectively the maximal and minimal solutions to (21) between T T"
‡

# T"0

and The properties of solutions to (21) and their relationship to stability and detectability inT#0 . 
terms of upper and lower solutions will be discussed in a separate paper.
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