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Abstract

The main result of this paper proves the existence of multiple so-
lutions to a class of generalized constant mean curvature equations,
called H-systems. Also contained is a regularity for conformal n-
harmonic maps.

1 Introduction

In this paper, we consider some systems of the form

div(|∇u|n−2∇u) = f(u,∇u), (1)

where u ∈ W 1,n(Ω, Rk), n, k ≥ 2; Ω ⊂ Rn is a bounded smooth domain, and
f : Rk ×Rnk → Rk is a smooth function. We assume

|f(u,∇u)| ≤ Λ|∇u|n, (2)

for some constant Λ > 0 that may depend on u.
A well-known example of (1) is the n-harmonic map equation. Let (N, h) ↪→

Rk be a C∞ compact Riemannian submanifold. An n-harmonic map u : Ω→
N is a critical point of the n-energy

∫
Ω |∇u|ndx in the space of functions

u ∈ W 1,n(Ω, Rk) with u(x) ∈ N for a.e. x ∈ Ω. The equation for n-harmonic
maps is

div(|∇u|n−2∇u) = |∇u|n−2Q(u,∇u), (3)
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where Q(u, ·) is the trace of the second fundamental form of N at u(x) ∈ N ;
Q(u,∇u) is quadratic in ∇u.

There is a vast literature on the regularity and partial regularity of solu-
tions to harmonic (or p-harmonic) map type equations; see [4][11][13][15][17][19][20][24][26][30]
and other references therein.

Our interest in this paper is mainly on the H-systems in higher dimen-
sions. Suppose u ∈ W 1,n(Ω, Rn+1), u = (u1, ..., .un+1). Then the cone gen-
erated by the image u(Ω), with vertex being the origin of Rn+1, has a well-
defined volume

V (u) =
1

n+ 1

∫

Ω
u · u1 ∧ · · · ∧ un;

see [24]. Here u1 ∧ · · · ∧ un is the cross product of the partial derivatives
u1, ..., un, which can be described as follows. For any vector v ∈ Rn+1,

v · u1 ∧ · · · ∧ un =

∣∣∣∣∣∣∣∣∣

v1 v2 ... vn+1

u1
1 u2

1 ... un+1
1

... ... ... ...
u1
n u2

n ... un+1
n

∣∣∣∣∣∣∣∣∣
.

Consider the minimization problem

min
∫

Ω
|∇u|n, u = η on ∂Ω, V (u) = c, (4)

for a given η ∈ W 1,n(Ω, Rn+1) and a constant c. A critical point of (4) is
called an n-harmonic map with prescribed volume; it satisfies

div
(
|∇u|n−2∇u

)
= Hu1 ∧ · · · ∧ un, u = η on ∂Ω, (5)

where H is the Lagrange multiplier.

When n = 2, (5) becomes

∆u = Hu1 ∧ u2. (6)

A conformal solution of (6) represents a surface of constant mean curvature;
see, e.g., [28] [31]. The existence of solutions and multiple solutions of (6)
were established in many works, including [6] [21] [27] [29] [31] [33]. In
Theorems 5 and 12 below, we prove for relatively small H and boundary
data, there is a solution of least energy-the small solution, and there is a
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large solution, with the same boundary data. This generalizes the early work
of Hildebrandt [21], Brezis and Coron [6] and Struwe [29] for n = 2.

For the regularity of (2-)harmonic maps u on a domain Ω ⊂ R2 (or
a smooth surface), Heléin [19] proved their C∞ regularity. Assuming u is
conformal, or stationary or energy minimizing, Morrey[23], Grüter[16] and
Schoen[25] established the regularity of u earlier. For the H-system (6) with
constant H, Wente [31] showed that any solution of (6) is analytic. Grüter
[16] proved the C1,α regularity (0 < α < 1) of conformal solutions to (6),
where H may depend on u; same result was obtained later by Bethuel [5]
assuming that |DH(u)| is bounded. Wente’s result was generalized to (5)
in [10][24], which implies that all solutions of (5) are C1,α regular. In this
paper, we prove the C1,α regularity of conformal solutions to (1) , which
generalizes the work of Grüter [16]. In particular, conformal n-harmonic
maps from Ω ⊂ Rn (or an n-manifold) are C1,α, and conformal solutions of
(5) with bounded H = H(u) are also C1,α. Unlike in two dimension, one
cannot reparametrize a solution to obtain conformality; so the conformality
condition for solutions to (1) is fairly strong. It is conjectured that all n-
harmonic maps and solutions to (5) with bounded H = H(u) are C1,α.
Generally speaking, C1,α regularity is optimal for solutions of (1)as shown
by examples in [22].

2 Existence of Solutions to H-systems

For any u ∈ W 1,n(Ω, Rn+1), the image u(Ω) is a generalized “hypersurface”
with area

A(u) =
∫

Ω
J(u)dx, J(u) = |u1 ∧ · · · ∧ un|,

where J(u) is the Jacobian of u. Note that

|v · u1 ∧ · · · ∧ un| ≤ |v||u1| · · · |un|
≤ |v|

( |u1|2 + · · ·+ |un|2
n

)n/2

= |v| |∇u|
n

√
nn

,

(7)
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and the equalities hold if and only if u is conformal. Here we say that a
function u ∈ W 1,n(Ω, Rk) is conformal if for some function λ(x) and all
i, j = 1, ..., n,

ui · uj = λ(x)δij . (8)

It follows from (7)

|u1 ∧ · · · ∧ un| ≤ |∇u|
n

√
nn

and A(u) ≤ 1√
nn

∫

Ω
|∇u|n , (9)

and each of the equalities holds iff u is conformal.
We now discuss some properties of the volume functional V.

First note that if u = (u1, ..., un+1) and u1 = 0 on ∂Ω, then for all i =
1, ..., n,

∫

Ω
u1∂ (u2, ..., un+1)

∂ (x1, ..., xn)
= (−1)i−1

∫

Ω
ui
∂(u1, ...,

∧
ui, ..., un+1)

∂ (x1, ..., xn)
, (10)

and the volume V can be written as

V (u) =
∫

Ω
u1∂ (u2, ..., un+1)

∂ (x1, ..., xn)
. (11)

In fact, (10) follows by expanding the determinant
∂(u2,...,un+1)
∂(x1,...,xn)

in the i-th
column, using integration by parts together with the fact

n∑

α=1

∂

∂xα
∂(u2, ...

∧
, ui, ..., un+1)

∂(x1, ...,
ˆ
xα, ..., xn)

= 0.

Expanding V (u) in terms of u1, ..., un+1 we get (11) by using (10).
As a consequence of (10) and isoperimetric inequality, we have

Proposition 1 If u = (u1, ..., un+1) ∈ W 1,n(Ω, R1+n) and u1 = 0 on ∂Ω,
then for some constant C1,

∣∣∣∣∣
∫
u1∂ (u2, ..., un+1)

∂ (x1, ..., xn)

∣∣∣∣∣ ≤ C1

∥∥∥∇u1
∥∥∥
Ln(Ω)

· · ·
∥∥∥∇un+1

∥∥∥
L(Ω)

(12)
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Proof: We may assume that none of ui is constant (otherwise, the inequality
is trivial), and that ‖∇ui‖Ln(Ω) = 1 for all i (by the homogeneity of (12) in

ui). Then (9) implies

A(u) ≤ 1√
nn

∫

Ω
|∇u|n =

(
n+ 1

n

)n/2
.

Denote v = (0, u2, ..., un+1). Then A(v) ≤ A (u) and V (v) = 0. So

∣∣∣∣∣
∫

Ω
u1∂ (u2, ..., un+1)

∂ (x1, ..., xn)

∣∣∣∣∣ = |V (u)− V (v)|

is the volume enclosed by the graphs of u and v, whose area is A(u) +A(v).
By isoperimetric inequality (see [2], for example),

|V (u)− V (v)| ≤ 1

C
[A(u) + A(v)](n+1)/n ,

where C = (n+ 1)ω
1
n
n and ωn is the area of the unit n-sphere Sn. Therefore,

for an absolute constant C1,

∣∣∣∣∣
∫

Ω
u1∂ (u2, ..., un+1)

∂ (x1, ..., xn)

∣∣∣∣∣ ≤ C1,

which shows (12) . 2

(12) implies the following corollaries.

Corollary 2 If u ∈ W 1,n(Ω, Rn+1) and ui|∂Ω = 0 for some i = 1, ..., n +
1, then the functional V is continuous at u in the norm of W 1,n(Ω, Rn+1).

Corollary 3 Suppose u, v ∈ W 1,n(Ω, Rn+1) and v = 0 or u = 0 on ∂Ω, then
for some constant C,

∣∣∣∣
∫

Ω
v · u1 ∧ · · · ∧ un

∣∣∣∣ ≤ C ‖∇v‖Ln(Ω) ‖∇u‖nL(Ω) . (13)

Proof: Expand |∫Ω v · u1 ∧ · · · ∧ un| in terms of v1, ..., vn+1 and apply (12)
to each term. 2
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We now derive a useful property of

R(v, u) =
∫

Ω
v · u1 ∧ ... ∧ un.

Suppose u, v, w ∈ W 1,n(Ω, Rn+1), w = 0 or v = 0 on ∂Ω, and ut = u + tw
for 0 ≤ t ≤ 1. For a moment, suppose that u, v, w ∈ C2. Then

R(v, u+ w)−R(v, u) =
∫

Ω
v · (ut)1 ∧ ... ∧ (ut)n |10

=
∫

Ω

n∑

i=0

v · (ut)1 ∧ ...∧ wi
i
∧... ∧ (ut)n

= −
∫

Ω

∫ 1

0

n∑

i=0

wi · (ut)1 ∧ ...∧ vi ∧... ∧ (ut)n

=
∫

Ω

∫ 1

0

n∑

i=0

w · (ut)1 ∧ ...∧ vi
i
∧... ∧ (ut)n

∑
j/=i

∑n

i=0
w · (ut)1 ∧ ...∧ (ut)ji

j

...∧ v
i
∧... ∧ (ut)n

=
∫

Ω

∫ 1

0

n∑

i=0

w · (ut)1 ∧ ...∧ vi
i
∧... ∧ (ut)n .

(14)
Here we used the skew-symmetry of the cross product, which implies the
term

∑
j 6=i

∑n
i=0 · · · = 0. It follows

|R(v, u+ w)−R(v, u)| ≤ C ||w||∞ ||∇v||Ln |||∇u|+ |∇w|||n−1
Ln ; (15)

or

|R(v, u+ w)−R(v, u)| ≤ C ||∇v||∞ ||w||Ln |||∇u|+ |∇w|||n−1
Ln . (16)

The estimates (15) and (16) show that, in addition to the condition that
u, v, w ∈ W 1,p(Ω, Rn+1), it is enough to assume w ∈ C0 for (15) to hold,
and v ∈ W 1,∞(Ω, Rn+1) for (16) .

Applying (14) to u = 0 and v, w ∈W 1,n(Ω, Rn+1) with v or w = 0 on ∂Ω,
we obtain

∫

Ω
v · w1 ∧ · · · ∧ wn =

∫

Ω

∫ 1

0
tn−1dt

n∑

i=0

w · w1 ∧ ...∧ vi
i
∧... ∧ wn

= − 1

n

∑n

i=1

∫

Ω
vi · w1 ∧ · · ·∧ w

i
∧ · · · ∧wn.

(17)
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The equation (5) can be derived by using (17) . We only need to calculate
d

dt
V (u+ tφ) for any φ ∈ W 1,n

0 (Ω, Rn+1). By (17)

d

dt
V (u+ tφ)

=
1

n+ 1

∫

Ω
φ · u1 ∧ · · · ∧ un +

1

n+ 1

n∑

i=1

∫

Ω
u · u1 ∧ · · ·∧ φi

i
∧ · · · ∧un

=
1

n+ 1

∫

Ω
φ · u1 ∧ · · · ∧ un − 1

n+ 1

n∑

i=1

∫

Ω
φi · u1 ∧ · · ·∧ u

i
∧ · · · ∧un

=
∫

Ω
φ · u1 ∧ · · · ∧ un.

2

The following is another property of R that we prove by (17) .

Theorem 4 Suppose that, as m→∞, um ⇀ u in W 1,n
0 (Ω, Rn+1), and either

vm → v in W 1,n(Ω, Rn+1) or ||vm − v||∞ → 0 with v being continuous, then

R(vm, um) ≡
∫
vm · um1 ∧ ... ∧ umn → R(v, u), as m→∞.

Proof: By (13) and the assumptions, we have

|R(vm, um)−R(v, um)| ≤
{ ‖∇vm −∇v‖Ln(Ω)

or ‖vm − v‖∞

}
‖∇um‖nLn(Ω) → 0

as m→∞. This implies that we may assume vm ≡ v. Furthermore, we may
assume that v is C2 by approximating v by smooth functions in the norm of
W 1,n, and in the norm of C0 in case v is continuous.

Now, because um ⇀ u in W 1,n
0 (Ω, Rn+1), we have um → u in Ln. By (17) ,

R(v, um) = − 1

n

∑n

i=1

∫

Ω
vi · (um)1 ∧ · · ·∧ umi ∧ · · · ∧ (um)n

→ − 1

n

∑n

i=1

∫

Ω
vi · u1 ∧ · · ·∧ u

i
∧ · · · ∧un, as m→∞

=
∫

Ω
v · u1 ∧ · · · ∧ ui ∧ · · · ∧ un = R(v, u).

2

We now prove the existence of the small solutions.
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Theorem 5 Suppose η ∈ W 1,n(Ω, Rn+1) and 0 6= H is a constant satisfying

||η||∞ |H| ≤
√
nn. (18)

Then the problem (5) has a solution u that satisfies ||u||∞ ≤ ||η||∞.

Remark 6 The case n = 2 of this theorem is due to Hildebrandt [21]; see
also [20][27][31][32][10]. In the next section, we will show that if η and H
are small enough, then the problem (5) has another “big” solution.

Remark 7 In general, a bound condition for H like (18) is needed for the
existence of a solution. Consider the case when Ω is the unit ball and η(x) =
(x, 0) for x ∈ ∂Ω. If H satisfies (18) , then a conformal representation of a
sphere cap of radius r =

√
nn/ |H| ≥ 1 with u|∂Ω = η is a solution to (4) .

If |H| > √nn, it can be shown that (4) has no solution.

Proof of Theorem5: Note that the equation in (5) is the Euler-Lagrange
equation of the functional I, defined by

I(u) =
∫

Ω
|∇u|n +

nH

n+ 1
u · u1 ∧ ... ∧ un, (19)

without constraint. Since I is neither bounded from above, nor from below,
it has no global maximum nor minimum. We will find a local minimum of I
by minimizing I on the subset

M =
{
u ∈ W 1,n

(
Ω, Rn+1

)
: u = η on ∂Ω, ||u||∞ |H| ≤

√
nn

2n+ 1

2n

}
.

It is easy to see that M is weakly closed and convex subset of W 1,n (Ω, Rn+1) .
For any u ∈M, it follows from (9) that

I(u) ≥
∫

Ω
|∇u|n − n |H| ||u||∞

(n+ 1)
√
nn

∫

Ω
|∇u|n

≥ 1

2n+ 2

∫

Ω
|∇u|n,

(20)

So I is coercive. From [23] or [8], I is quasiconvex. By the Theorem II.4
in [1], I is weakly lower semicontinuous. It follows from the direct method
that I has a minimum u in M.
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We now show that ||u||∞ ≤ ||η||∞ . Suppose k is any number satisfying

||η||∞ |H| < k |H| ≤ √nn2n+ 1

2n
. (21)

Let φ = max {|u| − k, 0} . Then φ ∈ W 1,n
0 (Ω, R+) ∩ L∞, and u − tφu ∈ M

for sufficiently small t ≥ 0. It follows from the minimality of u,

0 ≥ − d

dt
|t=0I(u− tφu) =

∫

Ω
< φu,DI(u) >

= n
∫

Ω
|∇u|n−2∇u∇ (φu) +

|H|
n+ 1

(φu) · u1 ∧ ... ∧ un
≥ n

∫

Ω

(
|∇u|n − |H|||u||∞

n+ 1
|u1 ∧ ... ∧ un|

)
φ+ n

∫

Ω
|∇u|n−2∇u · u∇φ

≥ n

2n+ 2

∫

{|u|>k}
|∇u|nφ+ n

∫

{|u|>k}
|∇u|n−2 (∇u · u)2 |u|−1 .

It follows that ∇u = 0 a.e. on {|u| > k}, which implies that ∇φ = 0 a.e. Ω.
So φ ≡ 0, or |u| ≤ k. As k in (21) is arbitrary, ||u||∞ ≤ ||η||∞, which implies
that ||u||∞ |H| ≤ ||u||∞ |H| <

√
nn 2n+1

2n
. So u is an interior minimum point

of M in the norm || · ||∞; it is then has to be a critical point of I and satisfies
(5) . 2

3 The Existence of Large Solutions

In Section 2, we showed that if ||η||∞ |H| ≤
√
nn, then the Dirichlet problem

(22) has a solution. In this section, we will prove that there is at least another
big solution if η is small enough. When n = 2, the existence of multiple
solutions of (22) was established in [6][29] under the optimal assumption 0 6=
||η||∞ |H| < 2. The optimal condition for our case is expected to be 0 6=
||η||∞ |H| <

√
nn, though our proof of Theorem (12) does not yield such an

estimate.

Denote by u0 the solution we found in Theorem 5 of Section 3. We will
solve the problem

div
(
|∇u|n−2∇u

)
= Hu1 ∧ · · · ∧ un, u = η on ∂Ω, (22)
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for u = u0 + v with some v ∈ W 1,n
0 (Ω, Rn+1), v 6= 0. Note that (22) is the

Euler-Lagrange equation of the functional

E(u) =
∫

Ω
|∇u|n +

nH

n+ 1
Q(u), (23)

without constraint, where Q(u) =
∫

Ω
u· u1 ∧ · · · ∧ un = (n+ 1)V (u). The

method is to find a critical point of (23) . . We need some preparations.

Proposition 8 For a, b ∈ Rk, (k ≥ 2 an integer), there holds

|a+ b|n = |a|n + |b|n + n |a|n−2 a · b+M(a, b) (24)

where M(a, b) satisfies

|M(a, b)| ≤ n(n− 2) (|a|+ |b|)n−3 |a| |b|2 . (25)

Proof: By the fundamental theorem of calculus,

M(a, b) ≡ |a+ b|n −
(
|a|n + |b|n + n |a|n−2 a · b

)

=
∫ 1

0

d

dt
|a+ tb|n dt−

(
|b|n + n |a|n−2 a · b

)

= n
∫ 1

0
|a+ tb|n−2

(
a · b+ t |b|2

)
dt−

(
|b|n + n |a|n−2 a · b

)

= n
∫ 1

0

∫ t

0

d

ds
|a+ sb|n−2 a · b dsdt+ n

∫ 1

0

∫ 1

0
t
d

ds
|sa+ tb|n−2 |b|2 dsdt.

(26)
(25) follows from the following estimate: For any p ≥ 1,

sup
0≤t≤1

∣∣∣∣∣
d

dt
|a+ tb|p

∣∣∣∣∣ ≤ p (|a|+ |b|)p−1 |b| . (27)

2

Proposition 9

Q(u0 + v) = Q(u0) +Q(v) +
n−1∑

i=1

Qi(v) (28)

where Qi(v) is homogeneous in v of degree i and homogeneous in u0 of degree
n+ 1− i.
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Proof: Let g(t) = Q(u0 + tv). Then (28) is the Taylor expansion of g at
t = 1, where Qi(v) = g(i)(0)/i! and Q(v) = Qn+1(v). 2

Proposition 10

n
∫

Ω
|∇u0|n−2∇u0∇v +

nH

n+ 1
Q1(v) = 0. (29)

Proof: The is just the weak form of the equation (22) ; v serves as a test
function. 2

It follows from (23)-(29) that

E (u0 + v) =
∫

Ω
|∇u0|n +

nH

n+ 1
Q(u0) +

∫

Ω
|∇v|n

+
nH

n+ 1
Qn (v) + E2(v) +

nH

n+ 1
Q(v),

(30)

where
Qn(v) = (n+ 1)

∫

Ω
u0 · v1 ∧ · · · ∧ vn, by (17) ,

E2(v) =
∫

Ω
M(∇u0,∇v) +

n−1∑

i=2

Qi(v). (31)

Since the first two terms of (30) are constant, we are led to the functional

Φ (v) ≡
∫

Ω
|∇v|n +

nH

n+ 1
Qn (v) + E2(v) +

nH

n+ 1
Q(v). (32)

We look at each term in (32) . Note that by (9) ,

|Qn (v)| ≤ C sup |u0|
∫

Ω
|∇v|n , where C =

n+ 1√
nn

. (33)

The isoperimetric inequality for mappings [2][Theorem 12] implies that if
v ∈ W 1.n

0 (Ω, Rn+1) then

|V (v)| ≤ 1

C
A(v)

n+1
n , (34)

where C = (n+ 1)ω
1
n
n and ωn is the area of the unit n-sphere Sn. In terms of

Q(v) = (n+ 1)V (v) and
∫

Ω
|∇v|n , it follows from (17) that

|Q(v)| n
n+1 ≤ 1

S

∫

Ω
|∇v|n , where S = n

n
2ω

1
n+1
n . (35)
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To estimate E2(v), we first notice that Q(u) = R(u, u) and

∑n−1

i=2
Qi(v) = Q(u0 + v)−Q(u0)−Q1(v)−Qn(v)−Q(v)

= [R(u0, u0 + v)−R(u0, u0)−R(u0, v)] +
[R(v, u0 + v)−R(v, v)− nR(u0, v)]− (n+ 1)R(v, u0)

(36)

By (14) , we have

|R(v, v + u0)−R(v, v)− nR(u0, v)|
=

∣∣∣∣∣
∫

Ω

∫ 1

0

[∫ t

0

d

ds

n∑

i=0

u0 · (v + su0)1 ∧ ...∧ vi
i
∧... ∧ (v + su0)n ds

]
dt

∣∣∣∣∣
≤ C ||u0||∞ ||∇u0||Ln ||∇v||Ln |||∇v|+ |∇u0|||n−2

Ln .
(37)

|R(u0, u0 + v)−R(u0, u0)−R(u0, v)|
=

∣∣∣∣∣
∫

Ω

∫ 1

0

n∑

i=0

u0 · (su0 + tv)1 ∧ ...∧ vi
i
∧... ∧ (su0 + tv)n |s=1

s=0dt

∣∣∣∣∣

=

∣∣∣∣∣
∫

Ω

∫ 1

0

∫ 1

0

d

ds

n∑

i=0

u0 · (su0 + tv)1 ∧ ...∧ vi
i
∧... ∧ (su0 + tv)n dsdt

∣∣∣∣∣
≤ C ||u0||∞ ||∇u0||Ln ||∇v||Ln |||∇v|+ |∇u0|||n−2

Ln .

(38)

|R(v, u0)| ≤ C ||∇v||Ln ||∇u0||nLn . (39)

By (31) , (25) and (36)-(39) , we get

|E2(v)| ≤
∫

Ω
n(n− 2) (|∇u0|+ |∇v|)n−3 |∇u0| |∇v|2 +

∣∣∣∣∣
n−1∑

i=2

Qi(v)

∣∣∣∣∣
≤ C

∫

Ω

(
|∇u0|n−2 |∇v|2 + |∇u0|2 |∇v|n−2

)
+

C
∫

Ω

n−1∑

i=2

|u0|∞ |∇u0| |∇v|
(
|∇v|n−2 + |∇u0|n−2

)
+ C |∇v| |∇u0|n

≤ C0

∫

Ω

n−1∑

i=1

|∇u0|n−i |∇v|i + C |∇v| |∇u0|n .
(40)

Note that Φ is unbounded from above and below, and it is a typical case
not satisfying the Palais-Smale conditions. The standard variational method
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fails to give the existence of a critical point. In the case n = 2, where E2

does not appear in Φ, Brezis and Coron [6] was able to find a nontrivial

critical point of Φ as a proper dilation of a minimum of
∫

Ω
|∇v|2 +

2H

3
Q2 (v)

subject to Q(v) =constant. For n ≥ 3, the terms of Φ have at least three
different homogeneities, therefore, the method in [6] is unlikely to work. Our
method is to apply a mountain pass theorem of Ambrosetti-Rabinowitz [3]
in a min-max scheme. We will use the following form of the theorem in [3],
as used by Brezis and Nirenberg[7] in solving elliptic equations with critical
exponents.

Theorem 11 [3][7]Assumption: Let Φ be a C1 function on a Banach space
E. Suppose there exists a neighborhood U of 0 in E and a constant ρ such
that Φ(u) ≥ ρ for every u ∈ ∂U, and

Φ(0) < ρ and Φ(v) < ρ for some v 6∈ U.
Set c = infp∈P maxw∈p Φ(w) ≥ ρ, where P denotes the class of paths joining
0 to v.

Conclusion: There is a sequence {ui} in E such that Φ(ui)→ c and

Φ′(ui)→ 0 in E∗.

The advantage of this theorem is that it does not require (PS)-condition.
We will show that a subsequence of {ui} converges to a nontrivial critical
point of Φ. Our result is stated as follows.

Theorem 12 η ∈ W 1,n(Ω, Rn+1) and ||η||∞ + ||∇η||Ln(∂Ω) is small enough,
then the problem (22) has at least two solutions.

Remark 13 One solution is the small solution u0 found in Section 2; it
satisfies ||u0||∞ ≤ ||η||∞ and is a minimum of E in M. Thus

1

2n+ 2

∫

Ω
|∇u0|n ≤ E(u0) ≤ E(η̄),

where η̄ (x) = |x| η
(
x
|x|
)

is a special extension of η. Thus

∫

Ω
|∇u0|n ≤

∫

Ω
|∇η̄|n+2nHQ(η̄) ≤ C0

∫

Ω
|∇η̄|n ≤ C1

(
||η||∞ + ||∇η||Ln(∂Ω)

)
.

13



It follows that ||η||∞+ ||∇η||Ln(∂Ω) is small implies that ||u0||∞+ ||∇u0||Ln(Ω)

is also small. The smallness condition used in the proof actually is referred
to u0.

We now start the proof of Theorem 12 with verifying the conditions in
Theorem 11.

Proposition 14 There are numbers δ, ρ > 0 such that

Φ(v) ≥ ρ for v ∈ W 1,n
0 (Ω, Rn+1) with ||∇v||Ln(Ω) = δ.

Proof: By (32) , (33) , (35), (40) and the Hölder inequality, for any ε > 0, there
are numbers C0, C (ε), such that

Φ(v) ≥
∫

Ω
|∇v|n − C0||u0||∞

∫

Ω
|∇v|n − ε

∫

Ω
|∇v|n−

C(ε)
(
|u0|∞ + ||∇u0||Ln(Ω)

)
− C0

(∫

Ω
|∇v|n

)n+1
n

.

Fix ε = 1
4

and a number δ > 0 such that C0δ ≤ 1
8
. Suppose u0 satisfies

C0||u0||∞ ≤ 1
4

and C(1
4
)
(
|u0|∞ + ||∇u0||Ln(Ω)

)
≤ 1

16
δn. Then for any v ∈

W 1,n
0 (Ω, Rn+1) with ||∇v||Ln(Ω) = δ, we have

Φ(v) ≥ 1
4

∫

Ω
|∇v|n − C0

(∫

Ω
|∇v|n

)n+1
n − C(ε)

(
|u0|∞ + ||∇u0||Ln(Ω)

)

≥ 1
8
δn − C(ε)

(
|u0|∞ + ||∇u0||Ln(Ω)

)
≥ 1

16
δn.

The proposition holds with ρ = 1
16
δn. 2

Proposition 15 There is a v ∈ W 1,n
0 (Ω, Rn+1) such that

Φ(v) ≤ 0,

sup
0≤t

Φ(tv) <
Sn+1

|H|n (n+ 1)
. (41)

The proof of Proposition 15 will be given later. Now we prove Theorem
12.
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Proof of Theorem 12: By the theorem of Ambrosetti-Rabinowitz above
and Propositions 14 and 15, there exists {vi} ⊂ W 1,n

0 (Ω, Rn+1) such that as
i→∞,

Φ(vi) =
∫

Ω

∣∣∣∇vi
∣∣∣
n

+
nH

n+ 1
Qn

(
vi
)

+

E2(vi) + nH
n+1

Q(vi)→ c,
(42)

where
c = inf

P
max
v∈P
{Φ(v)} , (43)

and
1

n
Φ′(vi) = − div (|∇vi|n−2∇vi) +

H

n+ 1
Q′n (vi) +

1

n
E ′2 (vi) +Hvi1 ∧ · · · ∧ vin → 0 in W−1,n′ ,

(44)

where n′ =
n

n− 1
. Multiply (44) by vi and integrate. We get

∫

Ω

∣∣∣∇vi
∣∣∣
n

+
H

n+ 1
< Q′n

(
vi
)
, vi > +

1

n
< E ′2(vi), vi > +HQ(vi)→ 0. (45)

We claim that ∫

Ω

∣∣∣∇vi
∣∣∣
n ≤ C (46)

for some constant C. To prove (46) , we first note that since Qn (vi) is ho-
mogeneous in vi of degree n,

∣∣∣< Q′n
(
vi
)
, vi >

∣∣∣ =
∣∣∣nQn

(
vi
)∣∣∣ ≤ n(n+ 1)√

nn
||u0||∞

∫

Ω

∣∣∣∇vi
∣∣∣
n

; (47)

and by (40) and the Hölder inequality, for ε > 0, there is a constant C (ε) ,
such that ∣∣∣E2(vi)

∣∣∣ ≤ C (ε)
∫

Ω
|∇u0|n + ε

∫

Ω

∣∣∣∇vi
∣∣∣
n
, (48)

∣∣∣< E ′2(vi), vi >
∣∣∣ ≤ C (ε)

∫

Ω
|∇u0|n + ε

∫

Ω

∣∣∣∇vi
∣∣∣
n
. (49)

Now look at the difference of (42) and (45) , we then get

H

n+ 1
Qn(vi) +

H

n+ 1
Q(vi) +

1

n
< E ′2(vi), vi > −E2(vi)→ −c.
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It follows for some constant C, depending on ε,

∣∣∣Q(vi)
∣∣∣ ≤ ε

∫

Ω

∣∣∣∇vi
∣∣∣
n

+ C(ε). (50)

Combining (50) with (42) , we get (46) . As in [18], we may assume, by passing
to a subsequence, that vi weakly converges to a v in W 1,n(Ω, Rn+1), and
strongly converges to v in W 1,p(Ω, Rn+1) for any p ∈ [1, n).

We claim that v is nontrivial. For otherwise, v ≡ 0 implies that

< Q′n (vi) , vi > = nQn (vi) = (n+ 1)
∫
Ω u0 · vi1 ∧ · · · ∧ vin,→ 0;

E2(vi)→ 0, < E ′2(vi), vi >→ 0.
(51)

By passing to a subsequence if necessary, we may assume further that
∫

Ω

∣∣∣∇vi
∣∣∣
n →

l. It follows that Q(vi)→ − l

H
by (45) . By (42) , we have

l +
nH

n+ 1

(
− 1

H

)
l→ c. (52)

It follows that c =
l

n+ 1
. On the other hand, by isoperimetric inequality,

l ≥ S

∣∣∣∣∣
l

H

∣∣∣∣∣

n
n+1

,

which implies l ≥ Sn+1

|H|n . Therefore,

c ≥ Sn+1

|H|n (n+ 1)
.

This is a contradiction, because Proposition 15 implies that c <
Sn+1

Hn(n+ 1)
.

So v is nontrivial. Taking the limit in (44) , we have that v satisfies Φ′(v) = 0,
or equivalently, u = u0 + v is a solution. 2
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The rest of this section is devoted to the proof of Proposition 15. The
case n = 2 has been shown in [6].We generalize the argument in [6] to higher
dimensions.

For v ∈ W 1,n
0 (Ω, Rn+1), denote

E3 (v) =
∫

Ω
|∇v|n +

nH

n+ 1
Qn (v) ; (53)

R(v) =
E3 (v)

|Q(v)| n
n+1

; (54)

S = inf





∫

Ω
|∇v|n

|Q(v)| n
n+1

, Q(v) 6= 0, v ∈ W 1,n
0 (Ω, Rn+1)




. (55)

Define
J = inf

{
T (v) : Q(v) 6= 0, v ∈ W 1,n

0 (Ω, Rn+1)
}
. (56)

We first prove

Proposition 16 J < S.

Proof: Suppose 0 ∈ Ω and ∇u(0) 6= 0. Choose a coordinate basis e1,..., en+1

for Rn+1 that has the same orientation as the canonical basis of Rn+1 such
that

γ ≡ ∂u

∂x1

(0) · e1 + ...+
∂u

∂xn
(0) · en < 0. (57)

Let v : Rn → Sn be the stereographic projection:

v(x) =
(2x,−2)

1 + |x|2 , x ∈ R
n, (58)

(v is written in the coordinate e1,..., en+1 ). For ε > 0, consider the map

vε(x) =
(2x,−2ε)

ε2 + |x|2 .

Let R > 0 be a number such that B4R ≡ B4R(0) ⊆ Ω. Let ξ ∈ C1
0 (B2R, [0, 1])

be a cut-off function such that ξ = 1 on BR. Note that ξvε ∈ C1
0 (Ω, Rn+1)

and the following properties of vε can be easily verified:

vε(x) =
1

ε
v(
x

ε
),
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|vε(x)| = 2√
ε2 + |x|2

, (59)

|∇vε(x)| ≤ C

ε2 + |x|2 ,

for a constant C independent of ε and x.
We shall establish

T (ξvε) = S + c0ε+O
(
ε1+α

)
as ε→ 0, (60)

where c0 < 0 and α ∈ (0, 1) are constants. Here, as a notation, O (f) denotes
a quantity satisfying |O(f)| ≤ C |f | for some constant C.The inequality of
the Proposition 16 follows by taking ε small enough.

We now proceed to show (60) . By the mean value theorem,

|f(a+ b)− f(a)| = O

(
sup

0≤t≤1
|f ′(a+ tb)|

)
|b| . (61)

Applying this to f(a) = |a|n with a = ξ∇vε, b = ∇ξvε, we have
∫

Ω
|∇ (ξvε)| =

∫

Rn
|ξ∇vε +∇ξvε|n

=
∫

Rn
|ξ∇vε|n +O

(∫

Rn
(|ξ∇vε|+ |∇ξvε|)n−1 |∇ξvε|

)
.

(62)

Since vε is conformal and vε (Rn) is a sphere of radius
1

ε
, we have

∫

Rn
|∇vε|n =

√
nn · area (vε (Rn)) =

√
nnωn
εn

. (63)

On the other hand, by (59),

∫

Rn
(ξn − 1) |∇vε|n = O

(∫

|x|≥R
|∇vε|n

)
= O

(∫ ∞
R

rn−1

r2n
dr

)
= O(1). (64)

Similarly,

O
(∫

Rn
(|ξ∇vε|)n−1 |∇ξvε|

)
= O(1)

O
(∫

Rn
|∇ξvε|n

)
= O(1).

(65)

18



It follows from (62)-(65)

∫

Ω
|∇ (ξvε)| =

√
nnωn
εn

+O(1). (66)

We now estimate Q(ξvε). Applying (61) to f(a) = v1 ∧ · · · ∧ vn (where
a = (vij)) with a = ξ∇vε, b = ∇ξvε, we have

Q(ξvε) =
∫

Ω
ξvε · (ξvε)1 ∧ · · · ∧ (ξvε)n

=
∫

Ω
ξn+1vε · vε1 ∧ · · · ∧ vεn +O

(∫

Rn
|ξvε| (|ξ∇vε|+ |∇ξvε|)n−1 |∇ξvε|

)

(67)
Recall that Q(vε)/(n+ 1) is the oriented volume of vε(Rn). So we have

Q(vε) = ± (n+ 1) vol(vε(Rn)) = ± ωn
εn+1

. (68)

Similarly to (64) and (65) , we have

∫

Ω

(
ξn+1 − 1

)
vε · vε1 ∧ · · · ∧ vεn = O(1). (69)

O
(∫

Rn
|ξvε| (|ξ∇vε|+ |∇ξvε|)n−1 |∇ξvε|

)
= O(1). (70)

So (67)− (70) imply that

|Q(vε)| = ωn
εn+1

+O(1). (71)

Similar argument applies to Q(ξvε), and we have

1

n+ 1
Qn(ξvε) =

∫

Ω
u · (ξvε)1 ∧ · · · ∧ (ξvε)n

=
∫

Ω
ξnu · vε1 ∧ · · · ∧ vεn +O

(∫

Rn
|u| (|ξ∇vε|+ |∇ξvε|)n−1 |∇ξvε|

)

=
∫

Ω
ξnu · vε1 ∧ · · · ∧ vεn +O (1) .

(72)

Denote ũ = ξnu. Since ũ is in C1,α
0 (B2R) by the regularity theorem in [24],

we have that for all x ∈ Rn,
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ũ(x) = ũ(0) +∇ũ(0)x+O
(
||∇ũ||Cα |x|1+α

)

= u(0) +∇u(0)x+O
(
||u||C1,α(B2R) |x|1+α

)
.

(73)

Therefore, by conformal invariance of Qn and (73),

∫

Ω
ũ · vε1 ∧ · · · ∧ vεn =

1

εn

∫

Rn
ũ (εx) · v1 ∧ · · · ∧ vndx

=
1

εn

(∫

Rn
(u(0) + ε∇u(0)x) · v1 ∧ · · · ∧ vndx

)
+

O

(
ε1−n+α ||∇u||Cα(B2R)

∫

|x|≤ 2R
ε

|x|1+α |∇v|n
)
.

(74)
We have ∫

Rn
u(0) · v1 ∧ · · · ∧ vndx = 0, (75)

and

∫

|x|≤ 2R
ε

|x|1+α |∇v|n = O(1) +
∫

1≤|r|≤ 2R
ε

rα−n = O(1) +O(εn−α+1). (76)

Next we show that

∫

Rn
∇u(0)x · v1 ∧ · · · ∧ vndx = cΣn

i=1

∂u

∂xi
· ei = cγ. (77)

Proof of (77) : By (17),

∫

Rn
∇u(0)x · v1 ∧ · · · ∧ vndx

= − 1

n

∫

Rn

n∑

i=1

(∇u(0)x)i · v1 ∧ · · ·∧ v
i
∧ · · · ∧vndx

= − 1

n

∫

Rn

n∑

i=1

∂u

∂xi
· [e1 ∧ · · ·∧ (x,−1)

i
∧ · · · ∧en]

1(
1 + |x|2

)ndx

= − 1

n

∫

Rn

n∑

i=1

(
∂u

∂xi
· ei
)
ei · [e1 ∧ · · ·∧ (−en+1)

i
∧ · · · ∧en]

1(
1 + |x|2

)ndx

= c′
∑n

i=1

∂u
∂xi
· ei = c′γ,
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where c′ =
∫
Rn

dx(
1 + |x|2

)n . So (72)− (77) together imply that

∫

Ω
u · (ξvε)1 ∧ · · · ∧ (ξvε)n = c′γε1−n +O

(
ε1−n+ε

)
. (78)

It follows from (66) (71) (440) that

T (ξvε) =
[
ε−nω

n
n+1
n +O(1)

]−1 (
ε−nnn/2ωn +O(1) + nHc′

n+1
γ +O (ε−n+1+α)

)

= S + c0ε+O (ε1+α) , where c0 = nHc
n+1

γ < 0.

This finishes the proof of (60) . 2

Proof of Proposition 15: Let ξvε be as in the proof Proposition 16 such
that T (ξvε) < S. It is easy to check the ± sign in (68) is (−1)n . Take v = ξvε

for n odd. Take v = −ξvε for n even; so T (v) = T (ξvε) and Q(v) = −Q(ξvε).
Thus for any n, T (v) < S and Q(v) < 0. We may also assume that Φ(v) ≤ 0,
by replacing v by λv for large λ > 0. Consider

Φ∗(tv) ≡ E3(tv) +
nH

n+ 1
Q(tv) = tnE3(v) +

nH

n+ 1
tn+1Q(v). (79)

It is easy to check that Φ∗ has a maximum at t = − E3(v)
Q(v)H

, with maximum
value

Φ∗(tv) =

[
E3(v)

|Q(v)| n
n+1

]n+1
1

|H|n (n+ 1)
<

Sn+1

|H|n (n+ 1)
. (80)

To show (41) , we need to assume that u0 is small, say,
∫

Ω
|∇u0|n ≤ 1, then

by (40)

|E2(v)| ≤ C
∫

Ω

n−1∑

i=1

|∇u0|n−i |∇v|i

≤ C
∑n−1

i=1

(∫

Ω
|∇u0|n

)n−i
n
(∫

Ω
|∇v|n

) i
n

≤ C
(∫

Ω
|∇u0|n

) 1
n ∑n−1

i=1

(∫

Ω
|∇v|n

) i
n

.

(81)

It follows
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Φ(tv) ≤ tnE3(v) +
nH

n+ 1
tn+1Q(v) + C

(∫

Ω
|∇u0|n

) 1
n ∑n−1

i=1
ti
(∫

Ω
|∇v|n

) i
n

≡ Φ∗∗(t, v).
(82)

By the construction of v, we have that

εnE3(v) =
√
nnωn +O(ε); εn

∫

Ω
|∇v|n =

√
nnωn +O(ε);

εn+1Q(v) = −ωn +O(εn+1).
(83)

Therefore, there are positive numbers C1, C2, C3, such that for any number
β > 0,

Φ∗∗(βε, v) = βnεnE3(v) +
nH

n+ 1
βn+1εn+1Q(v)+

C
(∫

Ω
|∇u0|n

) 1
n ∑n−1

i=1
βiεi

(∫

Ω
|∇v|n

) i
n

≤ C1β
n − C2β

n+1 + C3

(∫

Ω
|∇u0|n

) 1
n ∑n−1

i=1
βi.

(84)

It follows that there is a β∗ such that Φ∗∗(βε, v) ≤ 0 for all 0 < ε << 1
and β ≥ β∗. By (82) , we have,

sup0≤t Φ(tv) ≤ sup0≤t≤β∗ε Φ∗∗(t, v)

≤ sup0≤t Φ∗(t, v) + sup0≤t≤β∗εC
(∫

Ω
|∇u0|n

) 1
n ∑n−1

i=1
ti
(∫

Ω
|∇v|n

) i
n

≤ sup0≤t Φ∗(t, v) + C
(∫

Ω
|∇u0|n

) 1
n ∑n−1

i=1
β∗iεi

(∫

Ω
|∇v|n

) i
n

≤ sup0≤t Φ∗(t, v) + C4

(∫

Ω
|∇u0|n

) 1
n

,

(85)

where C4 depends on β∗. Since sup0≤t Φ∗(t, v) <
Sn+1

Hn (n+ 1)
, sup0≤t Φ(tv) <

Sn+1

Hn (n+ 1)
, if

∫

Ω
|∇u0|n is small enough. 2
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4 Regularity of Conformal Solutions

Our result is

Theorem 17 If u is a conformal solution of (1) and f satisfies (2), then
u ∈ C1,α(Ω) for some α ∈ (0, 1) . If u = η on ∂Ω and η ∈ C0 (∂Ω) , then
u ∈ C0(Ω̄).

When n = 2, this theorem was proved by Grüter in 1980 [16]. We will
use the main idea of the proof in [16].

Consider the set G of good points of u defined by

G = {x ∈ Ω : u is approximately differentiable at x, and
x is a Lebesgue point of |∇u|n, and |∇u|(x) 6= 0}.

Here u is approximately differentiable at a point x0 with approximate dif-
ferential ∇u(x0), by definition, if there is a u0 ∈ Rk such that for every
ε > 0,

Φn[LnbΩ\{x : |u(x)− u0 −∇u(x0)(x− x0)| ≤ ε|x− x0|}, x0] = 0,

where Φn denotes the n-dimensional density and LnbΩ is the Lebesgue mea-
sure, restricted to Ω.

We will need the following property for functions in W 1,n(Ω, Rk).

Proposition 18 ([12] [Theorem 4.5.9]) If u ∈ W 1,n(Ω, Rk), then u has weak
derivative and approximate differential almost everywhere, and when both
exist, they coincide.

For a proof, see [12]. Next, we have

Lemma 19 Suppose u ∈ W 1,n(Ω, Rk) and B ⊂ Ω is a ball. Then

oscB u ≤ 4max{α1, α2}, (86)

where α1 =osc∂B u, α2 = sup
y∈G∩B

inf
x∈∂B

|u(x)− u(y)|.
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Proof: The proof is similar to that in [16]. Denote α =max{α1, α2}. Take
a point x1 ∈ ∂B. Define z = u − u(x1) and v =max{|z| − 2α, 0}. Then
v ∈ W 1,n

0 (Ω). From the definitions of α1,α2, one sees that v = 0 on G ∩ B. It
follows that ∇v(y) = 0 if y ∈ G ∩ B. On the complement of G ∩ B, ∇v = 0
almost everywhere. Therefore ∇v = 0 almost everywhere on B, and so v
must be a constant, which is zero. 2

We also need the Courant-Lebesgue Lemma.

Lemma 20 Suppose u ∈ W 1,n
(
Ω, Rk

)
and B(x, r) ⊂ Ω, 0 < r < 1. Then

there is a constant C > 0 and some δ ∈ [
r

2
, r] such that

osc
∂B(x,δ)

u ≤ CK1/n, where K =
∫

B(x,r)
|∇u|n. (87)

Proof: Recall that for y ∈ B(x, r), |∇u(y)|2 ≥ ρ−2|∇θu(y)|2, where ρ =

|y − x| and θ =
y − x
ρ
∈ Sn−1. It follows

∫ r

r
2

∫

Sn−1
ρ−1|∇θu(y)|ndθdρ ≤ K. (88)

By Fubini’s theorem, there is a δ ∈ [
r

2
, r] such that

∫ r

r
2

∫

Sn−1
δ−1|∇θu(y)|ndθdρ =

r

2δ

∫

Sn−1
|∇θu(y)|ndθ. (89)

Since δ ≤ r, (88) (89) imply that
∫
Sn−1 |∇θu(y)|ndθ ≤ 2K. (87) follows from

Sobolev embedding theorem W 1,n(Sn−1, Rk) ↪→ C1/n. 2

This lemma gives a control of the oscillation of u on the boundary ∂B(x, δ).
Our following step is to estimate the interior oscillation. We need some
propositions.

Proposition 21 Suppose u ∈ W 1,n(Ω, Rk) is conformal and B ⊂ Ω is an
open subset. Define Dσ = B ∩ {x : |u(x) − u(x0)| < σ} for x0 ∈ B ∩ G and
σ > 0. Then

limsup
σ→0

σ−n
∫

Dσ
|∇u|n ≥ n

n

2
−1
ωn−1, (90)

where ωn−1 is the area of the sphere Sn−1.
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Remark 22 This Proposition was proved by Grüter [16] when n = 2.

Remark 23 Without the assumption that u is conformal, then (90) still
holds, with the right hand being replaced by n−1ωn−1.

Proof: We may assume u(x0) = 0. For ε, σ > 0, define

Tε = B\{x : |u(x)−∇u(x0)(x− x0)| ≤ ε√
n
|x− x0|},

Bε = B ∩ {x : |x− x0| < rε}, where rε =
σ
√
n

|∇u(x0)|+ ε
.

We claim

Bε\Tε ⊂ Dσ\Tε.
Indeed, if x ∈ Bε\Tε, then

|u(x)−∇u(x0)(x− x0)| ≤ ε√
n
|x− x0|;

while the conformality condition (8) implies that

|∇u(x0)(x− x0)|2 ≤ 1

n
|∇u(x0)|2|x− x0|2.

Therefore,

|u(x)| ≤ 1√
n

(|∇u(x0)|+ ε)|x− x0| < σ,

and so x ∈ Dσ\Tε.
Note that for any a, b ≥ 0, ε > 0,and p > 1, there holds

ap ≥ (1− ε)bε − (ε−1 − 1)|ap − bp|.
(For a proof, note that εbp + ε−1|ap − bp| ≥ 2bp/2|ap − bp|1/2 ≥ |ap − bp| −
(ap − bp) .) Using this inequality, we obtain

σ−n
∫

Dσ
|∇u(x)|n ≥ σ−n

∫

Bε\Tε
|∇u(x)|n

≥ σ−n(1− ε)
∫

Bε\Tε
|∇u(x0)|n−

−σ−n(ε−1 − 1)
∫

Bε\Tε
(|∇u(x)|n − |∇u(x0)|n).

(91)
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We look at each term in (91) as σ → 0. For the first term,

σ−n(1− ε)
∫

Bε\Tε
|∇u(x0)|n = σ−n(1− ε)|∇u(x0)|nLn(Bε\Tε)

→ ωn−1

n

√
nn(1− ε)

( |∇u(x0)|
|∇u(x0)|+ ε

)n
(1− Φn(LbTε, x0))

= ωn−1

n

√
nn(1− ε)

( |∇u(x0)|
|∇u(x0)|+ ε

)n
.

(92)

For the second term in (91), using that x0 is a Lebesgue point of |∇u|n, we
have, for fixed ε,

σ−n(ε−1 − 1)
∫

Bε\Tε
||∇u(x)|n − |∇u(x0)|n)|

≤ (ε−1 − 1)
√
nn

(|∇u(x0)|+ ε)n Ln(Bε)

∫

Bε\Tε
||∇u(x)|n − |∇u(x0)|n|

→ 0 as σ → 0.

(93)

Now taking the limit in (91) and using (92) (93), we obtain (90). 2

Theorem 24 Suppose B ⊂ Ω is a ball, x0 ∈ B ∩G, and Σ > 0 is a number
such that

2nΛΣ ≤ 1, (94)

dist (u(∂B), u(x0)) > Σ, (95)

where Λ is as in (2). Then

∫

B
|∇u|n ≥ 1

2
ωn−1n

n
2
−1Σn. (96)

Corollary 25 Suppose B ⊂ Ω is a ball such that

∫

B
|∇u|n ≤ ωn−1

2n̄+2nn/2+1Λn
.

Then for any x0 ∈ B ∩G,

dist (u(∂B), u(x0)) ≤ 1

ωn−1n
n
2
−1

(∫

B
|∇u|n

)1/n

.
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Proof of Corollary 25: Let

Σ =

(
4

ωn−1nn/2−1

∫

B
|∇u|n

)1/n

.

Then the condition (94) is satisfied, but the conclusion (96) does not hold,
therefore, (95) must not hold. 2

Proof of Theorem 24: For σ ∈ (0,Σ], denote

Dσ = B ∩ {x : |u(x)− u(x0)| < σ}.
Let λ ∈ C1

0(R, [0, 1] ) be a function such that λ(t) = 0 for t ≤ 0. For ρ ∈ (0,Σ),
define

η = λ(ρ− |u|)u.
From (94), we have η ∈ W 1,n

0 (B,Rk)∩L∞. Multiplying η to the equation (1)
and integrating by parts, we obtain

∫

Dρ
|∇u|nλ(ρ− |u|)−

∫

Dρ
|∇u|n−2λ′(ρ− |u|)|∇u · u|u| |

2

=
∫

Dρ
f(x, u,∇u)uλ(ρ− |u|).

(97)

Define

Φ(ρ) =
1

n

∫

Dρ
|∇u|nλ(ρ− |u|).

Then we have

Φ′(ρ) ≥ 1

n

∫

Dρ
|∇u|nλ′(ρ− |u|). (98)

From the conformality of u, it follows that |∇u · u|2 ≤ 1

n
|∇u|2|u|2. The

property of λ implies that

λ′(ρ− |u|) |u| ≤ ρλ′(ρ− |u|) .
Therefore, we have that

∫

Dρ
|∇u|n−2λ′(ρ− |u|)|∇u · u|u| |

2 ≤ 1

n

∫

Dρ
|∇u|nλ′(ρ− |u|) |u|

≤ 1

n
ρ
∫

Dρ
|∇u|nλ′(ρ− |u|) ≤ ρΦ′(ρ).

(99)
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Also, we have

∫

Dρ
f(x, u,∇u)uλ(ρ− |u|) ≤ Λ

∫

Dρ
|∇u|nλ(ρ− |u|) |u|

≤ Λ
∫

Dρ
|∇u|n

∫ ρ

0
λ′(σ − |u|)|u|dσ

≤ Λ
∫ ρ

0
σ

(∫

Dρ
|∇u|nλ′(σ − |u|)|u|

)
dσ

≤ nΛ
∫ ρ

0
σΦ′(σ)dσ.

(100)
Thus (97) together with (99) and (100) yields

nΦ(ρ)− ρΦ′(ρ) ≤ nΛ
∫ ρ

0
σΦ′(σ)dσ. (101)

This can be rewritten as

−
(

Φ(ρ)

ρn

)′
≤ nΛ

ρn+1

∫ ρ

0
σΦ′(σ)dσ ≤ nΛ

Φ(ρ)

ρn
. (102)

This differential inequality implies that enΛρΦ(ρ)

ρn
is increasing in ρ; in par-

ticular,
Φ(ρ)

ρn
has a limit as ρ → 0. Furthermore, for 0 < ρ1 ≤ ρ2 ≤ Σ, by

integrating 102 from ρ1 to ρ2, we have

Φ(ρ1)

ρn1
≤ Φ(ρ2)

ρn2
+ nΛ

∫ ρ2

0

Φ(ρ)

ρn
dρ. (103)

The second term of (103) can be estimated by integration by parts and using
(101)

∫ ρ2

0

Φ(ρ)

ρn
dρ ≤ Φ(ρ2)

ρn−1
2

+
∫ ρ2

0
ρ

(
−Φ(ρ)

ρn

)′
dρ

≤ Φ(ρ2)

ρn−1
2

+ nΛ
∫ ρ2

0

1

ρn

∫ ρ

0
σΦ′(σ)dσdρ

≤ Φ(ρ2)

ρn−1
2

+ nΛ
∫ ρ2

0

Φ(ρ)

ρn−1
dρ

≤ Φ(ρ2)

ρn−1
2

+ nΛρ2

∫ ρ2

0

Φ(ρ)

ρn
dρ.

(104)
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From the assumption, nΛρ2 ≤ nΛΣ ≤ 1
2
. Thus it follows that from (104)

∫ ρ2

0

Φ(ρ)

ρn
dρ ≤ 2

Φ(ρ2)

ρn−1
2

. (105)

Now (103) and (105) imply that

Φ(ρ1)

ρn1
≤ Φ(ρ2)

ρn2
+ 2nΛ

Φ(ρ2)

ρn−1
2

≤ 2
Φ(ρ2)

ρn2
. (106)

Given ε > 0, we choose λ(t) with the additional property that λ(t) = 1
for t ≥ ερ1. Then it easy to see

1

n

∫

Dρ1(1−ε)
|∇u|n ≤ Φ(ρ1), Φ(ρ2) ≤ 1

n

∫

Dρ2

|∇u|n. (107)

Apply (106) with ρ2 = Σ, and use (107), we then obtain

∫
Dρ1(1−ε) |∇u|n

ρn1
≤ 2

∫
DΣ
|∇u|n
Σn

≤ 2

∫
B |∇u|n

Σn
. (108)

Let ρ1 → 0 in (108) and apply Proposition 21, and then send ε → 0. (96)
then follows. 2

Proof of Theorem 17. We divide the proof into several steps. The first
step, showing the continuity of u, is the essential one. The other steps are
standard.

(a). u is continuous. Fix x0 ∈ Ω. Choose R > 0 small enough such that

B(x0,R) ⊂ Ω and
∫
B(x0,R) |∇u|n ≤

ωn−1

2n̄+2nn/2+1Λn
. By the Courant-Lebesgue

Lemma 20, there is a δ ∈ [R
2
, R] such that

osc
∂B(x0,δ)

u ≤ C

(∫

B(x0,R)
|∇u|n

)1/n

≡ α1(R).

Because
∫
B(x0,δ)

|∇u|n ≤ ∫
B(x0,R) |∇u|n, by Corollary 25, for any x0 ∈ B ∩

G,B = B(x0, δ),

dist (u(∂B), u(x0)) ≤ 1

ωn−1n
n
2
−1

(∫

B(x0,R)
|∇u|n

)1/n

≡ α2(R).
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Now Lemma 19 implies that

oscB(x0,δ) u ≤ 4max{α1(R), α2 (R)} → 0 as R→ 0. (109)

In particular, oscB(x0,R/2) u→ 0 as R→ 0. So u is continuous at x0.

(b). u is Cβ for some β ∈ (0, 1). We claim that if x0 ∈ W and R > 0 such
that B(x0, R) ⊂ Ω and oscB(x0,R)uΛ < 1, then there is a number τ ∈ (0, 1)
so that for every ball B (x, r) ⊂ B(x0, R)

∫

B(x,r/2)
|∇u|n ≤ τ

∫

B(x,r)
|∇u|n. (110)

By iteration, we have for some constants C and γ ∈ (0, 1) ,
∫

B(x,r)
|∇u|n ≤ Crγ for x ∈ B(x0, R/2) and r ∈ (0, R/2).

That u is Cβ for some β ∈ (0, 1) follows from Morrey’s Lemma [23][3.5.2]. The
proof of (110) is a standard “hole-filling” method. Let ū be the mean value
of u on B(x, r)\B(x, r/2) and η ∈ C1

0(B(x, r), [0, 1]) be a cut-off function
such that η = 1 on B(x, r/2) and |∇η| ≤ 3/r. Take φ = (u − ū)η, then
φ ∈ W 1,n

0 (B(x, r), Rk). Multiply φ to the equation (1) and integrate. We
then get

∣∣∣∣∣
∫

B(x,r)
η|∇u|n +

∫

B(x,r)
|∇u|n−2∇u∇η(u− ū)

∣∣∣∣∣

=

∣∣∣∣∣
∫

B(x,r)
f(x, u,∇u)η(u− ū)

∣∣∣∣∣
≤ oscB(x0,R)uΛ

∫

B(x,r)
|∇u|n.

(111)

By Hölder and Poincare’s inequalities, we estimate the second term of (111),

∣∣∣∣∣
∫

B(x,r)
|∇u|n−2∇u∇η(u− ū)

∣∣∣∣∣

≤ C1

(∫

B(x,r)\B(x,r/2)
|∇u|n

)(n−1)/n (
1
r

∫

B(x,r)\B(x,r/2)
|u− ū|n

)1/n

≤ C2

∫

B(x,r)\B(x,r/2)
|∇u|n,

(112)

30



where C1 and C2 depend only on n and k. Put (112) back to (111) and note
the property of η. It follows

∫

B(x,r/2)
|∇u|n − C2

∫

B(x,r)\B(x,r/2)
|∇u|n ≤ oscB(x0,R)uΛ

∫

B(x,r)
|∇u|n

or
(C2 + 1)

∫

B(x,r/2)
|∇u|n ≤

(
C2 + oscB(x0,R)uΛ

) ∫

B(x,r)
|∇u|n

Let τ =
(
C2 + oscB(x0,R)uΛ

)
/ (C2 + 1) . Then (43) follows.

(c) . u is C1,α for some α ∈ (0, 1) . For the proof of C1,α regularity based
on Cβ, we refer [17] or [13].

(d). u is continuous up to ∂Ω. This was proved in [24] [Theorem 4.1]. 2
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