Multiple Solutions and Regularity of H-systems

Libin Mou and Paul Yang

April 1994

Abstract

The main result of this paper proves the existence of multiple solutions to a class of generalized constant mean curvature equations, called H -systems. Also contained is a regularity for conformal nharmonic maps.

1 Introduction

In this paper, we consider some systems of the form

$$
\begin{equation*}
\operatorname{div}\left(|\nabla u|^{n-2} \nabla u\right)=f(u, \nabla u), \tag{1}
\end{equation*}
$$

where $u \in W^{1, n}\left(\Omega, R^{k}\right), n, k \geq 2 ; \Omega \subset R^{n}$ is a bounded smooth domain, and $f: R^{k} \times R^{n k} \rightarrow R^{k}$ is a smooth function. We assume

$$
\begin{equation*}
|f(u, \nabla u)| \leq \Lambda|\nabla u|^{n}, \tag{2}
\end{equation*}
$$

for some constant $\Lambda>0$ that may depend on u.
A well-known example of (1) is the n-harmonic map equation. Let $(N, h) \hookrightarrow$ R^{k} be a C^{∞} compact Riemannian submanifold. An n-harmonic map $u: \Omega \rightarrow$ N is a critical point of the n-energy $\int_{\Omega}|\nabla u|^{n} d x$ in the space of functions $u \in W^{1, n}\left(\Omega, R^{k}\right)$ with $u(x) \in N$ for a.e. $x \in \Omega$. The equation for n-harmonic maps is

$$
\begin{equation*}
\operatorname{div}\left(|\nabla u|^{n-2} \nabla u\right)=|\nabla u|^{n-2} Q(u, \nabla u), \tag{3}
\end{equation*}
$$

where $Q(u, \cdot)$ is the trace of the second fundamental form of N at $u(x) \in N$; $Q(u, \nabla u)$ is quadratic in ∇u.

There is a vast literature on the regularity and partial regularity of solutions to harmonic (or p-harmonic) map type equations; see [4][11][13][15][17][19][20][24][26][30] and other references therein.

Our interest in this paper is mainly on the H -systems in higher dimensions. Suppose $u \in W^{1, n}\left(\Omega, R^{n+1}\right), u=\left(u^{1}, \ldots, . u^{n+1}\right)$. Then the cone generated by the image $u(\Omega)$, with vertex being the origin of R^{n+1}, has a welldefined volume

$$
V(u)=\frac{1}{n+1} \int_{\Omega} u \cdot u_{1} \wedge \cdots \wedge u_{n}
$$

see [24]. Here $u_{1} \wedge \cdots \wedge u_{n}$ is the cross product of the partial derivatives u_{1}, \ldots, u_{n}, which can be described as follows. For any vector $v \in R^{n+1}$,

$$
v \cdot u_{1} \wedge \ldots \wedge u_{n}=\left|\begin{array}{cccc}
v^{1} & v^{2} & \ldots & v^{n+1} \\
u_{1}^{1} & u_{1}^{2} & \ldots & u_{1}^{n+1} \\
\ldots & \ldots & \ldots & \ldots \\
u_{n}^{1} & u_{n}^{2} & \ldots & u_{n}^{n+1}
\end{array}\right| .
$$

Consider the minimization problem

$$
\begin{equation*}
\min \int_{\Omega}|\nabla u|^{n}, u=\eta \text { on } \partial \Omega, V(u)=c, \tag{4}
\end{equation*}
$$

for a given $\eta \in W^{1, n}\left(\Omega, R^{n+1}\right)$ and a constant c. A critical point of (4) is called an n-harmonic map with prescribed volume; it satisfies

$$
\begin{equation*}
\operatorname{div}\left(|\nabla u|^{n-2} \nabla u\right)=H u_{1} \wedge \cdots \wedge u_{n}, u=\eta \text { on } \partial \Omega, \tag{5}
\end{equation*}
$$

where H is the Lagrange multiplier.
When $n=2$, (5) becomes

$$
\begin{equation*}
\Delta u=H u_{1} \wedge u_{2} \tag{6}
\end{equation*}
$$

A conformal solution of (6) represents a surface of constant mean curvature; see, e.g., [28] [31]. The existence of solutions and multiple solutions of (6) were established in many works, including [6] [21] [27] [29] [31] [33]. In Theorems 5 and 12 below, we prove for relatively small H and boundary data, there is a solution of least energy-the small solution, and there is a
large solution, with the same boundary data. This generalizes the early work of Hildebrandt [21], Brezis and Coron [6] and Struwe [29] for $n=2$.

For the regularity of (2-)harmonic maps u on a domain $\Omega \subset R^{2}$ (or a smooth surface), Heléin [19] proved their C^{∞} regularity. Assuming u is conformal, or stationary or energy minimizing, Morrey[23], Grüter[16] and Schoen[25] established the regularity of u earlier. For the H-system (6) with constant H, Wente [31] showed that any solution of (6) is analytic. Grüter [16] proved the $C^{1, \alpha}$ regularity ($0<\alpha<1$) of conformal solutions to (6), where H may depend on u; same result was obtained later by Bethuel [5] assuming that $|D H(u)|$ is bounded. Wente's result was generalized to (5) in $[10][24]$, which implies that all solutions of (5) are $C^{1, \alpha}$ regular. In this paper, we prove the $C^{1, \alpha}$ regularity of conformal solutions to (1), which generalizes the work of Grüter [16]. In particular, conformal n-harmonic maps from $\Omega \subset R^{n}$ (or an n-manifold) are $C^{1, \alpha}$, and conformal solutions of (5) with bounded $H=H(u)$ are also $C^{1, \alpha}$. Unlike in two dimension, one cannot reparametrize a solution to obtain conformality; so the conformality condition for solutions to (1) is fairly strong. It is conjectured that all nharmonic maps and solutions to (5) with bounded $H=H(u)$ are $C^{1, \alpha}$. Generally speaking, $C^{1, \alpha}$ regularity is optimal for solutions of (1)as shown by examples in [22].

2 Existence of Solutions to H-systems

For any $u \in W^{1, n}\left(\Omega, R^{n+1}\right)$, the image $u(\Omega)$ is a generalized "hypersurface" with area

$$
A(u)=\int_{\Omega} J(u) d x, J(u)=\left|u_{1} \wedge \cdots \wedge u_{n}\right|,
$$

where $J(u)$ is the Jacobian of u. Note that

$$
\begin{align*}
\left|v \cdot u_{1} \wedge \cdots \wedge u_{n}\right| & \leq|v|\left|u_{1}\right| \cdots\left|u_{n}\right| \\
& \leq|v|\left(\frac{\left|u_{1}\right|^{2}+\cdots+\left|u_{n}\right|^{2}}{n}\right)^{n / 2} \tag{7}\\
& =|v| \frac{|\nabla u|^{n}}{\sqrt{n^{n}}},
\end{align*}
$$

and the equalities hold if and only if u is conformal. Here we say that a function $u \in W^{1, n}\left(\Omega, R^{k}\right)$ is conformal if for some function $\lambda(x)$ and all $i, j=1, \ldots, n$,

$$
\begin{equation*}
u_{i} \cdot u_{j}=\lambda(x) \delta_{i j} . \tag{8}
\end{equation*}
$$

It follows from (7)

$$
\begin{equation*}
\left|u_{1} \wedge \cdots \wedge u_{n}\right| \leq \frac{|\nabla u|^{n}}{\sqrt{n^{n}}} \text { and } A(u) \leq \frac{1}{\sqrt{n^{n}}} \int_{\Omega}|\nabla u|^{n} \tag{9}
\end{equation*}
$$

and each of the equalities holds iff u is conformal.
We now discuss some properties of the volume functional V.
First note that if $u=\left(u^{1}, \ldots, u^{n+1}\right)$ and $u^{1}=0$ on $\partial \Omega$, then for all $i=$ $1, \ldots, n$,

$$
\begin{equation*}
\int_{\Omega} u^{1} \frac{\partial\left(u^{2}, \ldots, u^{n+1}\right)}{\partial\left(x^{1}, \ldots, x^{n}\right)}=(-1)^{i-1} \int_{\Omega} u^{i} \frac{\partial\left(u^{1}, \ldots, \hat{u^{i}}, \ldots, u^{n+1}\right)}{\partial\left(x^{1}, \ldots, x^{n}\right)} \tag{10}
\end{equation*}
$$

and the volume V can be written as

$$
\begin{equation*}
V(u)=\int_{\Omega} u^{1} \frac{\partial\left(u^{2}, \ldots, u^{n+1}\right)}{\partial\left(x^{1}, \ldots, x^{n}\right)} . \tag{11}
\end{equation*}
$$

In fact, (10) follows by expanding the determinant $\frac{\partial\left(u^{2}, \ldots, u^{n+1}\right)}{\partial\left(x^{1}, \ldots, x^{n}\right)}$ in the i-th column, using integration by parts together with the fact

$$
\sum_{\alpha=1}^{n} \frac{\partial}{\partial x^{\alpha}} \frac{\partial\left(u^{2}, \ldots, \hat{u}^{i}, \ldots, u^{n+1}\right)}{\partial\left(x^{1}, \ldots, \hat{x^{\alpha}}, \ldots, x^{n}\right)}=0
$$

Expanding $V(u)$ in terms of u^{1}, \ldots, u^{n+1} we get (11) by using (10).
As a consequence of (10) and isoperimetric inequality, we have
Proposition 1 If $u=\left(u^{1}, \ldots, u^{n+1}\right) \in W^{1, n}\left(\Omega, R^{1+n}\right)$ and $u^{1}=0$ on $\partial \Omega$, then for some constant C_{1},

$$
\begin{equation*}
\left|\int u^{1} \frac{\partial\left(u^{2}, \ldots, u^{n+1}\right)}{\partial\left(x^{1}, \ldots, x^{n}\right)}\right| \leq C_{1}\left\|\nabla u^{1}\right\|_{L^{n}(\Omega)} \cdots\left\|\nabla u^{n+1}\right\|_{L(\Omega)} \tag{12}
\end{equation*}
$$

Proof: We may assume that none of u^{i} is constant (otherwise, the inequality is trivial), and that $\left\|\nabla u^{i}\right\|_{L^{n}(\Omega)}=1$ for all i (by the homogeneity of (12) in u^{i}). Then (9) implies

$$
A(u) \leq \frac{1}{\sqrt{n^{n}}} \int_{\Omega}|\nabla u|^{n}=\left(\frac{n+1}{n}\right)^{n / 2} .
$$

Denote $v=\left(0, u^{2}, \ldots, u^{n+1}\right)$. Then $A(v) \leq A(u)$ and $V(v)=0$. So

$$
\left|\int_{\Omega} u^{1} \frac{\partial\left(u^{2}, \ldots, u^{n+1}\right)}{\partial\left(x^{1}, \ldots, x^{n}\right)}\right|=|V(u)-V(v)|
$$

is the volume enclosed by the graphs of u and v, whose area is $A(u)+A(v)$. By isoperimetric inequality (see [2], for example),

$$
|V(u)-V(v)| \leq \frac{1}{C}[A(u)+A(v)]^{(n+1) / n}
$$

where $C=(n+1) \omega_{n}^{\frac{1}{n}}$ and ω_{n} is the area of the unit n-sphere S^{n}. Therefore, for an absolute constant C_{1},

$$
\left|\int_{\Omega} u^{1} \frac{\partial\left(u^{2}, \ldots, u^{n+1}\right)}{\partial\left(x^{1}, \ldots, x^{n}\right)}\right| \leq C_{1}
$$

which shows (12).
(12) implies the following corollaries.

Corollary 2 If $u \in W^{1, n}\left(\Omega, R^{n+1}\right)$ and $u^{i} \mid \partial \Omega=0$ for some $i=1, \ldots, n+$ 1 , then the functional V is continuous at u in the norm of $W^{1, n}\left(\Omega, R^{n+1}\right)$.

Corollary 3 Suppose $u, v \in W^{1, n}\left(\Omega, R^{n+1}\right)$ and $v=0$ or $u=0$ on $\partial \Omega$, then for some constant C,

$$
\begin{equation*}
\left|\int_{\Omega} v \cdot u_{1} \wedge \cdots \wedge u_{n}\right| \leq C\|\nabla v\|_{L^{n}(\Omega)}\|\nabla u\|_{L(\Omega)}^{n} \tag{13}
\end{equation*}
$$

Proof: Expand $\left|\int_{\Omega} v \cdot u_{1} \wedge \cdots \wedge u_{n}\right|$ in terms of v^{1}, \ldots, v^{n+1} and apply (12) to each term.

We now derive a useful property of

$$
R(v, u)=\int_{\Omega} v \cdot u_{1} \wedge \ldots \wedge u_{n}
$$

Suppose $u, v, w \in W^{1, n}\left(\Omega, R^{n+1}\right), w=0$ or $v=0$ on $\partial \Omega$, and $u_{t}=u+t w$ for $0 \leq t \leq 1$. For a moment, suppose that $u, v, w \in C^{2}$. Then

$$
\begin{align*}
R(v, u+w)-R(v, u) & =\left.\int_{\Omega} v \cdot\left(u_{t}\right)_{1} \wedge \ldots \wedge\left(u_{t}\right)_{n}\right|_{0} ^{1} \\
& =\int_{\Omega} \sum_{i=0}^{n} v \cdot\left(u_{t}\right)_{1} \wedge \ldots \wedge w_{i} \wedge \ldots \wedge\left(u_{t}\right)_{n} \\
& =-\int_{\Omega} \int_{0}^{1} \sum_{i=0}^{n} w_{i} \cdot\left(u_{t}\right)_{1} \wedge \ldots \wedge v_{i} \wedge \ldots \wedge\left(u_{t}\right)_{n} \\
& =\int_{\Omega} \int_{0}^{1} \sum_{i=0}^{n} w \cdot\left(u_{t}\right)_{1} \wedge \ldots \wedge v_{i} \wedge \ldots \wedge\left(u_{t}\right)_{n} \\
& \sum_{j \neq i} \sum_{i=0}^{n} w \cdot\left(u_{t}\right)_{1} \wedge \ldots \wedge\left(u_{t}\right)_{j i} \ldots \wedge v_{i} \wedge \ldots \wedge\left(u_{t}\right)_{n} \\
& =\int_{\Omega} \int_{0}^{1} \sum_{i=0}^{n} w \cdot\left(u_{t}\right)_{1} \wedge \ldots \wedge v_{i} \wedge \ldots \wedge\left(u_{t}\right)_{n} . \tag{14}
\end{align*}
$$

Here we used the skew-symmetry of the cross product, which implies the term $\sum_{j \neq i} \sum_{i=0}^{n} \cdots=0$. It follows

$$
\begin{equation*}
|R(v, u+w)-R(v, u)| \leq C\|w\|_{\infty}\|\nabla v\|_{L^{n}}\left|\left\|\nabla u \left|+|\nabla w| \|_{L^{n}}^{n-1} ;\right.\right.\right. \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
|R(v, u+w)-R(v, u)| \leq C\|\nabla v\|_{\infty}\|w\|_{L^{n}}\left|\|\nabla u|+| \nabla w\|_{L^{n}}^{n-1} .\right. \tag{16}
\end{equation*}
$$

The estimates (15) and (16) show that, in addition to the condition that $u, v, w \in W^{1, p}\left(\Omega, R^{n+1}\right)$, it is enough to assume $w \in C^{0}$ for (15) to hold, and $v \in W^{1, \infty}\left(\Omega, R^{n+1}\right)$ for (16).

Applying (14) to $u=0$ and $v, w \in W^{1, n}\left(\Omega, R^{n+1}\right)$ with v or $w=0$ on $\partial \Omega$, we obtain

$$
\begin{align*}
\int_{\Omega} v \cdot w_{1} \wedge \cdots \wedge & w_{n}=\int_{\Omega} \int_{0}^{1} t^{n-1} d t \sum_{i=0}^{n} w \cdot w_{1} \wedge \ldots \wedge v_{i} \wedge \ldots \wedge w_{n} \tag{17}\\
& =-\frac{1}{n} \sum_{i=1}^{n} \int_{\Omega} v_{i} \cdot w_{1} \wedge \cdots \wedge w_{i} \wedge \cdots \wedge w_{n} .
\end{align*}
$$

The equation (5) can be derived by using (17). We only need to calculate $\frac{d}{d t} V(u+t \phi)$ for any $\phi \in W_{0}^{1, n}\left(\Omega, R^{n+1}\right)$. By (17)

$$
\begin{aligned}
& \frac{d}{d t} V(u+t \phi) \\
= & \frac{1}{n+1} \int_{\Omega} \phi \cdot u_{1} \wedge \cdots \wedge u_{n}+\frac{1}{n+1} \sum_{i=1}^{n} \int_{\Omega} u \cdot u_{1} \wedge \cdots \wedge \phi_{i} \wedge \cdots \wedge u_{n} \\
= & \frac{1}{n+1} \int_{\Omega} \phi \cdot u_{1} \wedge \cdots \wedge u_{n}-\frac{1}{n+1} \sum_{i=1}^{n} \int_{\Omega} \phi_{i} \cdot u_{1} \wedge \cdots \wedge u_{i} \wedge \cdots \wedge u_{n} \\
= & \int_{\Omega} \phi \cdot u_{1} \wedge \cdots \wedge u_{n} .
\end{aligned}
$$

The following is another property of R that we prove by (17).
Theorem 4 Suppose that, as $m \rightarrow \infty, u^{m} \rightharpoonup u$ in $W_{0}^{1, n}\left(\Omega, R^{n+1}\right)$, and either $v^{m} \rightarrow v$ in $W^{1, n}\left(\Omega, R^{n+1}\right)$ or $\left\|v^{m}-v\right\|_{\infty} \rightarrow 0$ with v being continuous, then

$$
R\left(v^{m}, u^{m}\right) \equiv \int v^{m} \cdot u_{1}^{m} \wedge \ldots \wedge u_{n}^{m} \rightarrow R(v, u), \text { as } m \rightarrow \infty
$$

Proof: By (13) and the assumptions, we have

$$
\left|R\left(v^{m}, u^{m}\right)-R\left(v, u^{m}\right)\right| \leq\left\{\begin{array}{c}
\left\|\nabla v^{m}-\nabla v\right\|_{L^{n}(\Omega)} \\
\text { or }\left\|v^{m}-v\right\|_{\infty}
\end{array}\right\}\left\|\nabla u^{m}\right\|_{L^{n}(\Omega)}^{n} \rightarrow 0
$$

as $m \rightarrow \infty$. This implies that we may assume $v^{m} \equiv v$. Furthermore, we may assume that v is C^{2} by approximating v by smooth functions in the norm of $W^{1, n}$, and in the norm of C^{0} in case v is continuous.

Now, because $u^{m} \rightharpoonup u$ in $W_{0}^{1, n}\left(\Omega, R^{n+1}\right)$, we have $u^{m} \rightarrow u$ in L^{n}. By (17),

$$
\begin{aligned}
R\left(v, u^{m}\right) & =-\frac{1}{n} \sum_{i=1}^{n} \int_{\Omega} v_{i} \cdot\left(u^{m}\right)_{1} \wedge \cdots \wedge u_{i}^{m} \wedge \cdots \wedge\left(u^{m}\right)_{n} \\
& \rightarrow-\frac{1}{n} \sum_{i=1}^{n} \int_{\Omega} v_{i} \cdot u_{1} \wedge \cdots \wedge u_{i} \wedge \cdots \wedge u_{n}, \text { as } m \rightarrow \infty \\
& =\int_{\Omega} v \cdot u_{1} \wedge \cdots \wedge u_{i} \wedge \cdots \wedge u_{n}=R(v, u) .
\end{aligned}
$$

We now prove the existence of the small solutions.

Theorem 5 Suppose $\eta \in W^{1, n}\left(\Omega, R^{n+1}\right)$ and $0 \neq H$ is a constant satisfying

$$
\begin{equation*}
\|\eta\|_{\infty}|H| \leq \sqrt{n^{n}} \tag{18}
\end{equation*}
$$

Then the problem (5) has a solution u that satisfies $\|u\|_{\infty} \leq\|\eta\|_{\infty}$.
Remark 6 The case $n=2$ of this theorem is due to Hildebrandt [21]; see also [20][27][31][32][10]. In the next section, we will show that if η and H are small enough, then the problem (5) has another "big" solution.

Remark 7 In general, a bound condition for H like (18) is needed for the existence of a solution. Consider the case when Ω is the unit ball and $\eta(x)=$ $(x, 0)$ for $x \in \partial \Omega$. If H satisfies (18), then a conformal representation of a sphere cap of radius $r=\sqrt{n^{n}} /|H| \geq 1$ with $u \mid \partial \Omega=\eta$ is a solution to (4). If $|H|>\sqrt{n^{n}}$, it can be shown that (4) has no solution.

Proof of Theorem5: Note that the equation in (5) is the Euler-Lagrange equation of the functional I, defined by

$$
\begin{equation*}
I(u)=\int_{\Omega}|\nabla u|^{n}+\frac{n H}{n+1} u \cdot u_{1} \wedge \ldots \wedge u_{n} \tag{19}
\end{equation*}
$$

without constraint. Since I is neither bounded from above, nor from below, it has no global maximum nor minimum. We will find a local minimum of I by minimizing I on the subset

$$
M=\left\{u \in W^{1, n}\left(\Omega, R^{n+1}\right): u=\eta \text { on } \partial \Omega,\|u\|_{\infty}|H| \leq \sqrt{n^{n}} \frac{2 n+1}{2 n}\right\}
$$

It is easy to see that M is weakly closed and convex subset of $W^{1, n}\left(\Omega, R^{n+1}\right)$. For any $u \in M$, it follows from (9) that

$$
\begin{gather*}
I(u) \geq \int_{\Omega}|\nabla u|^{n}-\frac{n|H|| | u \mid \|_{\infty}}{(n+1) \sqrt{n^{n}}} \int_{\Omega}|\nabla u|^{n} \tag{20}\\
\geq \frac{1}{2 n+2} \int_{\Omega}|\nabla u|^{n}
\end{gather*}
$$

So I is coercive. From [23] or [8], I is quasiconvex. By the Theorem II. 4 in [1], I is weakly lower semicontinuous. It follows from the direct method that I has a minimum u in M.

We now show that $\|u\|_{\infty} \leq\|\eta\|_{\infty}$. Suppose k is any number satisfying

$$
\begin{equation*}
\|\eta\|_{\infty}|H|<k|H| \leq \sqrt{n^{n}} \frac{2 n+1}{2 n} \tag{21}
\end{equation*}
$$

Let $\phi=\max \{|u|-k, 0\}$. Then $\phi \in W_{0}^{1, n}\left(\Omega, R^{+}\right) \cap L^{\infty}$, and $u-t \phi u \in M$ for sufficiently small $t \geq 0$. It follows from the minimality of u,

$$
\begin{aligned}
0 & \geq-\left.\frac{d}{d t}\right|_{t=0} I(u-t \phi u)=\int_{\Omega}<\phi u, D I(u)> \\
& =n \int_{\Omega}|\nabla u|^{n-2} \nabla u \nabla(\phi u)+\frac{|H|}{n+1}(\phi u) \cdot u_{1} \wedge \ldots \wedge u_{n} \\
& \geq n \int_{\Omega}\left(|\nabla u|^{n}-\frac{\left.|H|| | u\right|_{\infty}}{n+1}\left|u_{1} \wedge \ldots \wedge u_{n}\right|\right) \phi+n \int_{\Omega}|\nabla u|^{n-2} \nabla u \cdot u \nabla \phi \\
& \geq \frac{n}{2 n+2} \int_{\{|u|>k\}}|\nabla u|^{n} \phi+n \int_{\{|u|>k\}}|\nabla u|^{n-2}(\nabla u \cdot u)^{2}|u|^{-1} .
\end{aligned}
$$

It follows that $\nabla u=0$ a.e. on $\{|u|>k\}$, which implies that $\nabla \phi=0$ a.e. Ω. So $\phi \equiv 0$, or $|u| \leq k$. As k in (21) is arbitrary, $\|u\|_{\infty} \leq\|\eta\|_{\infty}$, which implies that $\|u\|_{\infty}|H| \leq\|u\|_{\infty}|H|<\sqrt{n^{n}} \frac{2 n+1}{2 n}$. So u is an interior minimum point of M in the norm $\|\cdot\|_{\infty}$; it is then has to be a critical point of I and satisfies (5).

3 The Existence of Large Solutions

In Section 2, we showed that if $\|\eta\|_{\infty}|H| \leq \sqrt{n^{n}}$, then the Dirichlet problem (22) has a solution. In this section, we will prove that there is at least another big solution if η is small enough. When $n=2$, the existence of multiple solutions of (22) was established in [6][29] under the optimal assumption $0 \neq$ $\|\eta\|_{\infty}|H|<2$. The optimal condition for our case is expected to be $0 \neq$ $\|\eta\|_{\infty}|H|<\sqrt{n^{n}}$, though our proof of Theorem (12) does not yield such an estimate.

Denote by u_{0} the solution we found in Theorem 5 of Section 3. We will solve the problem

$$
\begin{equation*}
\operatorname{div}\left(|\nabla u|^{n-2} \nabla u\right)=H u_{1} \wedge \cdots \wedge u_{n}, u=\eta \text { on } \partial \Omega, \tag{22}
\end{equation*}
$$

for $u=u_{0}+v$ with some $v \in W_{0}^{1, n}\left(\Omega, R^{n+1}\right), v \neq 0$. Note that (22) is the Euler-Lagrange equation of the functional

$$
\begin{equation*}
E(u)=\int_{\Omega}|\nabla u|^{n}+\frac{n H}{n+1} Q(u), \tag{23}
\end{equation*}
$$

without constraint, where $Q(u)=\int_{\Omega} u \cdot u_{1} \wedge \cdots \wedge u_{n}=(n+1) V(u)$. The method is to find a critical point of (23) . . We need some preparations.

Proposition 8 For $a, b \in R^{k},(k \geq 2$ an integer $)$, there holds

$$
\begin{equation*}
|a+b|^{n}=|a|^{n}+|b|^{n}+n|a|^{n-2} a \cdot b+M(a, b) \tag{24}
\end{equation*}
$$

where $M(a, b)$ satisfies

$$
\begin{equation*}
|M(a, b)| \leq n(n-2)(|a|+|b|)^{n-3}|a||b|^{2} . \tag{25}
\end{equation*}
$$

Proof: By the fundamental theorem of calculus,

$$
\begin{align*}
M(a, b) & \equiv|a+b|^{n}-\left(|a|^{n}+|b|^{n}+n|a|^{n-2} a \cdot b\right) \\
& =\int_{0}^{1} \frac{d}{d t}|a+t b|^{n} d t-\left(|b|^{n}+n|a|^{n-2} a \cdot b\right) \\
& =n \int_{0}^{1}|a+t b|^{n-2}\left(a \cdot b+t|b|^{2}\right) d t-\left(|b|^{n}+n|a|^{n-2} a \cdot b\right) \\
& =n \int_{0}^{1} \int_{0}^{t} \frac{d}{d s}|a+s b|^{n-2} a \cdot b d s d t+n \int_{0}^{1} \int_{0}^{1} t \frac{d}{d s}|s a+t b|^{n-2}|b|^{2} d s d t . \tag{26}
\end{align*}
$$

(25) follows from the following estimate: For any $p \geq 1$,

$$
\begin{equation*}
\left.\sup _{0 \leq t \leq 1}\left|\frac{d}{d t}\right| a+\left.t b\right|^{p}\left|\leq p(|a|+|b|)^{p-1}\right| b \right\rvert\, . \tag{27}
\end{equation*}
$$

Proposition 9

$$
\begin{equation*}
Q\left(u_{0}+v\right)=Q\left(u_{0}\right)+Q(v)+\sum_{i=1}^{n-1} Q_{i}(v) \tag{28}
\end{equation*}
$$

where $Q_{i}(v)$ is homogeneous in v of degree i and homogeneous in u_{0} of degree $n+1-i$.

Proof: Let $g(t)=Q\left(u_{0}+t v\right)$. Then (28) is the Taylor expansion of g at $t=1$, where $Q_{i}(v)=g^{(i)}(0) / i$! and $Q(v)=Q_{n+1}(v)$.

Proposition 10

$$
\begin{equation*}
n \int_{\Omega}\left|\nabla u_{0}\right|^{n-2} \nabla u_{0} \nabla v+\frac{n H}{n+1} Q_{1}(v)=0 . \tag{29}
\end{equation*}
$$

Proof: The is just the weak form of the equation (22) ; v serves as a test function.

It follows from (23)-(29) that

$$
\begin{align*}
E\left(u_{0}+v\right)= & \int_{\Omega}\left|\nabla u_{0}\right|^{n}+\frac{n H}{n+1} Q\left(u_{0}\right)+\int_{\Omega}|\nabla v|^{n} \tag{30}\\
& +\frac{n H}{n+1} Q_{n}(v)+E_{2}(v)+\frac{n H}{n+1} Q(v),
\end{align*}
$$

where

$$
\begin{gather*}
Q_{n}(v)=(n+1) \int_{\Omega} u_{0} \cdot v_{1} \wedge \cdots \wedge v_{n}, \text { by }(17), \\
E_{2}(v)=\int_{\Omega} M\left(\nabla u_{0}, \nabla v\right)+\sum_{i=2}^{n-1} Q_{i}(v) . \tag{31}
\end{gather*}
$$

Since the first two terms of (30) are constant, we are led to the functional

$$
\begin{equation*}
\Phi(v) \equiv \int_{\Omega}|\nabla v|^{n}+\frac{n H}{n+1} Q_{n}(v)+E_{2}(v)+\frac{n H}{n+1} Q(v) . \tag{32}
\end{equation*}
$$

We look at each term in (32). Note that by (9),

$$
\begin{equation*}
\left|Q_{n}(v)\right| \leq C \sup \left|u_{0}\right| \int_{\Omega}|\nabla v|^{n}, \text { where } C=\frac{n+1}{\sqrt{n^{n}}} . \tag{33}
\end{equation*}
$$

The isoperimetric inequality for mappings [2][Theorem 12] implies that if $v \in W_{0}^{1 . n}\left(\Omega, R^{n+1}\right)$ then

$$
\begin{equation*}
|V(v)| \leq \frac{1}{C} A(v)^{\frac{n+1}{n}} \tag{34}
\end{equation*}
$$

where $C=(n+1) \omega_{n}^{\frac{1}{n}}$ and ω_{n} is the area of the unit n-sphere S^{n}. In terms of $Q(v)=(n+1) V(v)$ and $\int_{\Omega}|\nabla v|^{n}$, it follows from (17) that

$$
\begin{equation*}
|Q(v)|^{\frac{n}{n+1}} \leq \frac{1}{S} \int_{\Omega}|\nabla v|^{n}, \text { where } S=n^{\frac{n}{2}} \omega_{n}^{\frac{1}{n+1}} \tag{35}
\end{equation*}
$$

To estimate $E_{2}(v)$, we first notice that $Q(u)=R(u, u)$ and

$$
\begin{align*}
\sum_{i=2}^{n-1} Q_{i}(v) & =Q\left(u_{0}+v\right)-Q\left(u_{0}\right)-Q_{1}(v)-Q_{n}(v)-Q(v) \\
& =\left[R\left(u_{0}, u_{0}+v\right)-R\left(u_{0}, u_{0}\right)-R\left(u_{0}, v\right)\right]+ \tag{36}\\
& {\left[R\left(v, u_{0}+v\right)-R(v, v)-n R\left(u_{0}, v\right)\right]-(n+1) R\left(v, u_{0}\right) }
\end{align*}
$$

By (14), we have

$$
\begin{align*}
& \left|R\left(v, v+u_{0}\right)-R(v, v)-n R\left(u_{0}, v\right)\right| \\
& =\left|\int_{\Omega} \int_{0}^{1}\left[\int_{0}^{t} \frac{d}{d s} \sum_{i=0}^{n} u_{0} \cdot\left(v+s u_{0}\right)_{1} \wedge \ldots \wedge v_{i} \wedge \ldots \wedge\left(v+s u_{0}\right)_{n} d s\right] d t\right| \\
& \leq C| | u_{0}\left\|_{\infty}\right\| \nabla u_{0}\left\|_{L^{n}}\right\| \nabla v\left\|_{L^{n}}| ||\nabla v|+\mid \nabla u_{0}\right\| \|_{L^{n}}^{n-2} . \tag{37}
\end{align*}
$$

$\left|R\left(u_{0}, u_{0}+v\right)-R\left(u_{0}, u_{0}\right)-R\left(u_{0}, v\right)\right|$
$=\left|\int_{\Omega} \int_{0}^{1} \sum_{i=0}^{n} u_{0} \cdot\left(s u_{0}+t v\right)_{1} \wedge \ldots \wedge v_{i} \wedge \ldots \wedge\left(s u_{0}+t v\right)_{n}\right|_{s=0}^{s=1} d t \mid$
$=\left|\int_{\Omega} \int_{0}^{1} \int_{0}^{1} \frac{d}{d s} \sum_{i=0}^{n} u_{0} \cdot\left(s u_{0}+t v\right)_{1} \wedge \ldots \wedge v_{i} \wedge \ldots \wedge\left(s u_{0}+t v\right)_{n} d s d t\right|$
$\leq C\left\|u_{0}\right\|_{\infty}\left\|\nabla u_{0}\right\|_{L^{n}}\|\nabla v\|_{L^{n}}\left\||\nabla v|+\left|\nabla u_{0}\right|\right\|_{L^{n}}^{n-2}$.

$$
\begin{equation*}
\left|R\left(v, u_{0}\right)\right| \leq C\|\nabla v\|_{L^{n}}\left\|\nabla u_{0}\right\|_{L^{n}}^{n} . \tag{39}
\end{equation*}
$$

By (31), (25) and (36)-(39), we get

$$
\begin{align*}
\left|E_{2}(v)\right| \leq & \int_{\Omega} n(n-2)\left(\left|\nabla u_{0}\right|+|\nabla v|\right)^{n-3}\left|\nabla u_{0}\right||\nabla v|^{2}+\left|\sum_{i=2}^{n-1} Q_{i}(v)\right| \\
\leq & C \int_{\Omega}\left(\left|\nabla u_{0}\right|^{n-2}|\nabla v|^{2}+\left|\nabla u_{0}\right|^{2}|\nabla v|^{n-2}\right)+ \\
& C \int_{\Omega} \sum_{i=2}^{n-1}\left|u_{0}\right|_{\infty}\left|\nabla u_{0}\right||\nabla v|\left(|\nabla v|^{n-2}+\left|\nabla u_{0}\right|^{n-2}\right)+C|\nabla v|\left|\nabla u_{0}\right|^{n} \\
\leq & C_{0} \int_{\Omega}^{n-1}\left|\nabla u_{i=1}^{n-1}\right|^{n-i}|\nabla v|^{i}+C|\nabla v|\left|\nabla u_{0}\right|^{n} . \tag{40}
\end{align*}
$$

Note that Φ is unbounded from above and below, and it is a typical case not satisfying the Palais-Smale conditions. The standard variational method
fails to give the existence of a critical point. In the case $n=2$, where E_{2} does not appear in Φ, Brezis and Coron [6] was able to find a nontrivial critical point of Φ as a proper dilation of a minimum of $\int_{\Omega}|\nabla v|^{2}+\frac{2 H}{3} Q_{2}(v)$ subject to $Q(v)=$ constant. For $n \geq 3$, the terms of Φ have at least three different homogeneities, therefore, the method in [6] is unlikely to work. Our method is to apply a mountain pass theorem of Ambrosetti-Rabinowitz [3] in a min-max scheme. We will use the following form of the theorem in [3], as used by Brezis and Nirenberg[7] in solving elliptic equations with critical exponents.

Theorem 11 [3][7]Assumption: Let Φ be a C^{1} function on a Banach space E. Suppose there exists a neighborhood U of 0 in E and a constant ρ such that $\Phi(u) \geq \rho$ for every $u \in \partial U$, and

$$
\Phi(0)<\rho \text { and } \Phi(v)<\rho \text { for some } v \notin U \text {. }
$$

Set $c=\inf _{p \in P} \max _{w \in p} \Phi(w) \geq \rho$, where P denotes the class of paths joining 0 to v.

Conclusion: There is a sequence $\left\{u_{i}\right\}$ in E such that $\Phi\left(u_{i}\right) \rightarrow c$ and

$$
\Phi^{\prime}\left(u_{i}\right) \rightarrow 0 \text { in } E^{*} .
$$

The advantage of this theorem is that it does not require (PS)-condition. We will show that a subsequence of $\left\{u_{i}\right\}$ converges to a nontrivial critical point of Φ. Our result is stated as follows.

Theorem $12 \eta \in W^{1, n}\left(\Omega, R^{n+1}\right)$ and $\|\eta\|_{\infty}+\|\nabla \eta\|_{L^{n}(\partial \Omega)}$ is small enough, then the problem (22) has at least two solutions.

Remark 13 One solution is the small solution u_{0} found in Section 2; it satisfies $\left\|u_{0}\right\|_{\infty} \leq\|\eta\|_{\infty}$ and is a minimum of E in M. Thus

$$
\frac{1}{2 n+2} \int_{\Omega}\left|\nabla u_{0}\right|^{n} \leq E\left(u_{0}\right) \leq E(\bar{\eta}),
$$

where $\bar{\eta}(x)=|x| \eta\left(\frac{x}{|x|}\right)$ is a special extension of η. Thus

$$
\int_{\Omega}\left|\nabla u_{0}\right|^{n} \leq \int_{\Omega}|\nabla \bar{\eta}|^{n}+2 n H Q(\bar{\eta}) \leq C_{0} \int_{\Omega}|\nabla \bar{\eta}|^{n} \leq C_{1}\left(\|\eta\|_{\infty}+\|\nabla \eta\|_{L^{n}(\partial \Omega)}\right) .
$$

It follows that $\|\eta\|_{\infty}+\|\nabla \eta\|_{L^{n}(\partial \Omega)}$ is small implies that $\left\|u_{0}\right\|_{\infty}+\left\|\nabla u_{0}\right\|_{L^{n}(\Omega)}$ is also small. The smallness condition used in the proof actually is referred to u_{0}.

We now start the proof of Theorem 12 with verifying the conditions in Theorem 11.

Proposition 14 There are numbers $\delta, \rho>0$ such that

$$
\Phi(v) \geq \rho \text { for } v \in W_{0}^{1, n}\left(\Omega, R^{n+1}\right) \text { with }\|\nabla v\|_{L^{n}(\Omega)}=\delta \text {. }
$$

Proof: $\mathrm{By}(32),(33),(35),(40)$ and the Hölder inequality, for any $\epsilon>0$, there are numbers $C_{0}, C(\epsilon)$, such that

$$
\begin{array}{r}
\Phi(v) \geq \int_{\Omega}|\nabla v|^{n}-\left.C_{0}\left|\left\|u_{0}\right\|_{\infty} \int_{\Omega}\right| \nabla v\right|^{n}-\epsilon \int_{\Omega}|\nabla v|^{n}- \\
C(\epsilon)\left(\left|u_{0}\right|_{\infty}+\left\|\nabla u_{0}\right\|_{L^{n}(\Omega)}\right)-C_{0}\left(\int_{\Omega}|\nabla v|^{n}\right)^{\frac{n+1}{n}} .
\end{array}
$$

Fix $\epsilon=\frac{1}{4}$ and a number $\delta>0$ such that $C_{0} \delta \leq \frac{1}{8}$. Suppose u_{0} satisfies $C_{0}\left\|u_{0}\right\|_{\infty} \leq \frac{1}{4}$ and $C\left(\frac{1}{4}\right)\left(\left|u_{0}\right|_{\infty}+\left\|\nabla u_{0}\right\|_{L^{n}(\Omega)}\right) \leq \frac{1}{16} \delta^{n}$. Then for any $v \in$ $W_{0}^{1, n}\left(\Omega, R^{n+1}\right)$ with $\|\nabla v\|_{L^{n}(\Omega)}=\delta$, we have

$$
\begin{gathered}
\Phi(v) \geq \frac{1}{4} \int_{\Omega}|\nabla v|^{n}-C_{0}\left(\int_{\Omega}|\nabla v|^{n}\right)^{\frac{n+1}{n}}-C(\epsilon)\left(\left|u_{0}\right|_{\infty}+\left\|\nabla u_{0}\right\|_{L^{n}(\Omega)}\right) \\
\geq \frac{1}{8} \delta^{n}-C(\epsilon)\left(\left|u_{0}\right|_{\infty}+\left\|\nabla u_{0}\right\|_{L^{n}(\Omega)}\right) \geq \frac{1}{16} \delta^{n} .
\end{gathered}
$$

The proposition holds with $\rho=\frac{1}{16} \delta^{n}$.
Proposition 15 There is a $v \in W_{0}^{1, n}\left(\Omega, R^{n+1}\right)$ such that

$$
\begin{gather*}
\Phi(v) \leq 0 \\
\sup _{0 \leq t} \Phi(t v)<\frac{S^{n+1}}{|H|^{n}(n+1)} . \tag{41}
\end{gather*}
$$

The proof of Proposition 15 will be given later. Now we prove Theorem 12.

Proof of Theorem 12: By the theorem of Ambrosetti-Rabinowitz above and Propositions 14 and 15 , there exists $\left\{v^{i}\right\} \subset W_{0}^{1, n}\left(\Omega, R^{n+1}\right)$ such that as $i \rightarrow \infty$,

$$
\begin{gather*}
\Phi\left(v^{i}\right)=\int_{\Omega}\left|\nabla v^{i}\right|^{n}+\frac{n H}{n+1} Q_{n}\left(v^{i}\right)+ \tag{42}\\
E_{2}\left(v^{i}\right)+\frac{n H}{n+1} Q\left(v^{i}\right) \xrightarrow{\rightarrow},
\end{gather*}
$$

where

$$
\begin{equation*}
c=\inf _{P} \max _{v \in P}\{\Phi(v)\}, \tag{43}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{1}{n} \Phi^{\prime}\left(v^{i}\right) & =-\operatorname{div}\left(\left|\nabla v^{i}\right|^{n-2} \nabla v^{i}\right)+\frac{H}{n+1} Q_{n}^{\prime}\left(v^{i}\right)+ \tag{44}\\
& \frac{1}{n} E_{2}^{\prime}\left(v^{i}\right)+H v_{1}^{i} \wedge \cdots \wedge v_{n}^{i} \rightarrow 0 \text { in } W^{-1, n^{\prime}}
\end{align*}
$$

where $n^{\prime}=\frac{n}{n-1}$. Multiply (44) by v^{i} and integrate. We get

$$
\begin{equation*}
\int_{\Omega}\left|\nabla v^{i}\right|^{n}+\frac{H}{n+1}<Q_{n}^{\prime}\left(v^{i}\right), v^{i}>+\frac{1}{n}<E_{2}^{\prime}\left(v^{i}\right), v^{i}>+H Q\left(v^{i}\right) \rightarrow 0 . \tag{45}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\int_{\Omega}\left|\nabla v^{i}\right|^{n} \leq C \tag{46}
\end{equation*}
$$

for some constant C. To prove (46), we first note that since $Q_{n}\left(v^{i}\right)$ is homogeneous in v^{i} of degree n,

$$
\begin{equation*}
\left|<Q_{n}^{\prime}\left(v^{i}\right), v^{i}>\left|=\left|n Q_{n}\left(v^{i}\right)\right| \leq \frac{n(n+1)}{\sqrt{n^{n}}}\left\|u_{0}\right\|_{\infty} \int_{\Omega}\right| \nabla v^{i}\right|^{n} ; \tag{47}
\end{equation*}
$$

and by (40) and the Hölder inequality, for $\epsilon>0$, there is a constant $C(\epsilon)$, such that

$$
\begin{gather*}
\left|E_{2}\left(v^{i}\right)\right| \leq C(\epsilon) \int_{\Omega}\left|\nabla u_{0}\right|^{n}+\epsilon \int_{\Omega}\left|\nabla v^{i}\right|^{n} \tag{48}\\
\left|<E_{2}^{\prime}\left(v^{i}\right), v^{i}>\left|\leq C(\epsilon) \int_{\Omega}\right| \nabla u_{0}\right|^{n}+\epsilon \int_{\Omega}\left|\nabla v^{i}\right|^{n} . \tag{49}
\end{gather*}
$$

Now look at the difference of (42) and (45), we then get

$$
\frac{H}{n+1} Q_{n}\left(v^{i}\right)+\frac{H}{n+1} Q\left(v^{i}\right)+\frac{1}{n}<E_{2}^{\prime}\left(v^{i}\right), v^{i}>-E_{2}\left(v^{i}\right) \rightarrow-c .
$$

It follows for some constant C, depending on ϵ,

$$
\begin{equation*}
\left|Q\left(v^{i}\right)\right| \leq \epsilon \int_{\Omega}\left|\nabla v^{i}\right|^{n}+C(\epsilon) . \tag{50}
\end{equation*}
$$

Combining (50) with (42), we get (46) . As in [18], we may assume, by passing to a subsequence, that v^{i} weakly converges to a v in $W^{1, n}\left(\Omega, R^{n+1}\right)$, and strongly converges to v in $W^{1, p}\left(\Omega, R^{n+1}\right)$ for any $p \in[1, n)$.

We claim that v is nontrivial. For otherwise, $v \equiv 0$ implies that

$$
\begin{align*}
<Q_{n}^{\prime}\left(v^{i}\right), v^{i}> & =n Q_{n}\left(v^{i}\right)=(n+1) \int_{\Omega} u_{0} \cdot v_{1}^{i} \wedge \cdots \wedge v_{n}^{i}, \rightarrow 0 \tag{51}\\
& E_{2}\left(v^{i}\right) \rightarrow 0,<E_{2}^{\prime}\left(v^{i}\right), v^{i}>\rightarrow 0 .
\end{align*}
$$

By passing to a subsequence if necessary, we may assume further that $\int_{\Omega}\left|\nabla v^{i}\right|^{n} \rightarrow$ l. It follows that $Q\left(v^{i}\right) \rightarrow-\frac{l}{H}$ by (45). By (42), we have

$$
\begin{equation*}
l+\frac{n H}{n+1}\left(-\frac{1}{H}\right) l \rightarrow c . \tag{52}
\end{equation*}
$$

It follows that $c=\frac{l}{n+1}$. On the other hand, by isoperimetric inequality,

$$
l \geq S\left|\frac{l}{H}\right|^{\frac{n}{n+1}}
$$

which implies $l \geq \frac{S^{n+1}}{|H|^{n}}$. Therefore,

$$
c \geq \frac{S^{n+1}}{|H|^{n}(n+1)}
$$

This is a contradiction, because Proposition 15 implies that $c<\frac{S^{n+1}}{H^{n}(n+1)}$. So v is nontrivial. Taking the limit in (44), we have that v satisfies $\Phi^{\prime}(v)=0$, or equivalently, $u=u_{0}+v$ is a solution.

The rest of this section is devoted to the proof of Proposition 15. The case $n=2$ has been shown in [6]. We generalize the argument in [6] to higher dimensions.

For $v \in W_{0}^{1, n}\left(\Omega, R^{n+1}\right)$, denote

$$
\begin{gather*}
E_{3}(v)=\int_{\Omega}|\nabla v|^{n}+\frac{n H}{n+1} Q_{n}(v) \tag{53}\\
R(v)=\frac{E_{3}(v)}{|Q(v)|^{\frac{n}{n+1}}} ; \tag{54}\\
S=\inf \left\{\frac{\int_{\Omega}|\nabla v|^{n}}{|Q(v)|^{\frac{n}{n+1}}}, Q(v) \neq 0, v \in W_{0}^{1, n}\left(\Omega, R^{n+1}\right)\right\} . \tag{55}
\end{gather*}
$$

Define

$$
\begin{equation*}
J=\inf \left\{T(v): Q(v) \neq 0, v \in W_{0}^{1, n}\left(\Omega, R^{n+1}\right)\right\} \tag{56}
\end{equation*}
$$

We first prove

Proposition $16 \quad J<S$.

Proof: Suppose $0 \in \Omega$ and $\nabla u(0) \neq 0$. Choose a coordinate basis $e_{1, \ldots}, e_{n+1}$ for R^{n+1} that has the same orientation as the canonical basis of R^{n+1} such that

$$
\begin{equation*}
\gamma \equiv \frac{\partial u}{\partial x_{1}}(0) \cdot e_{1}+\ldots+\frac{\partial u}{\partial x_{n}}(0) \cdot e_{n}<0 . \tag{57}
\end{equation*}
$$

Let $v: R^{n} \rightarrow S^{n}$ be the stereographic projection:

$$
\begin{equation*}
v(x)=\frac{(2 x,-2)}{1+|x|^{2}}, x \in R^{n} \tag{58}
\end{equation*}
$$

(v is written in the coordinate $e_{1, \cdots}, e_{n+1}$). For $\epsilon>0$, consider the map

$$
v^{\epsilon}(x)=\frac{(2 x,-2 \epsilon)}{\epsilon^{2}+|x|^{2}}
$$

Let $R>0$ be a number such that $B_{4 R} \equiv B_{4 R}(0) \subseteq \Omega$. Let $\xi \in C_{0}^{1}\left(B_{2 R},[0,1]\right)$ be a cut-off function such that $\xi=1$ on B_{R}. Note that $\xi v^{\epsilon} \in C_{0}^{1}\left(\Omega, R^{n+1}\right)$ and the following properties of v^{ϵ} can be easily verified:

$$
v^{\epsilon}(x)=\frac{1}{\epsilon} v\left(\frac{x}{\epsilon}\right),
$$

$$
\begin{align*}
& \left|v^{\epsilon}(x)\right|=\frac{2}{\sqrt{\epsilon^{2}+|x|^{2}}} \tag{59}\\
& \left|\nabla v^{\epsilon}(x)\right| \leq \frac{C}{\epsilon^{2}+|x|^{2}}
\end{align*}
$$

for a constant C independent of ϵ and x.
We shall establish

$$
\begin{equation*}
T\left(\xi v^{\epsilon}\right)=S+c_{0} \epsilon+O\left(\epsilon^{1+\alpha}\right) \text { as } \epsilon \rightarrow 0 \tag{60}
\end{equation*}
$$

where $c_{0}<0$ and $\alpha \in(0,1)$ are constants. Here, as a notation, $O(f)$ denotes a quantity satisfying $|O(f)| \leq C|f|$ for some constant C. The inequality of the Proposition 16 follows by taking ϵ small enough.

We now proceed to show (60). By the mean value theorem,

$$
\begin{equation*}
|f(a+b)-f(a)|=O\left(\sup _{0 \leq t \leq 1}\left|f^{\prime}(a+t b)\right|\right)|b| \tag{61}
\end{equation*}
$$

Applying this to $f(a)=|a|^{n}$ with $a=\xi \nabla v^{\epsilon}, b=\nabla \xi v^{\epsilon}$, we have

$$
\begin{align*}
& \int_{\Omega}\left|\nabla\left(\xi v^{\epsilon}\right)\right|=\int_{R^{n}}\left|\xi \nabla v^{\epsilon}+\nabla \xi v^{\epsilon}\right|^{n} \tag{62}\\
& =\int_{R^{n}}\left|\xi \nabla v^{\epsilon}\right|^{n}+O\left(\int_{R^{n}}\left(\left|\xi \nabla v^{\epsilon}\right|+\left|\nabla \xi v^{\epsilon}\right|\right)^{n-1}\left|\nabla \xi v^{\epsilon}\right|\right) .
\end{align*}
$$

Since v^{ϵ} is conformal and $v^{\epsilon}\left(R^{n}\right)$ is a sphere of radius $\frac{1}{\epsilon}$, we have

$$
\begin{equation*}
\int_{R^{n}}\left|\nabla v^{\epsilon}\right|^{n}=\sqrt{n^{n}} \cdot \operatorname{area}\left(v^{\epsilon}\left(R^{n}\right)\right)=\frac{\sqrt{n^{n}} \omega_{n}}{\epsilon^{n}} \tag{63}
\end{equation*}
$$

On the other hand, by (59),

$$
\begin{equation*}
\int_{R^{n}}\left(\xi^{n}-1\right)\left|\nabla v^{\epsilon}\right|^{n}=O\left(\int_{|x| \geq R}\left|\nabla v^{\epsilon}\right|^{n}\right)=O\left(\int_{R}^{\infty} \frac{r^{n-1}}{r^{2 n}} d r\right)=O(1) . \tag{64}
\end{equation*}
$$

Similarly,

$$
\begin{gather*}
O\left(\int_{R^{n}}\left(\left|\xi \nabla v^{\epsilon}\right|\right)^{n-1}\left|\nabla \xi v^{\epsilon}\right|\right)=O(1) \tag{65}\\
O\left(\int_{R^{n}}\left|\nabla \xi v^{\epsilon}\right|^{n}\right)=O(1)
\end{gather*}
$$

It follows from (62)-(65)

$$
\begin{equation*}
\int_{\Omega}\left|\nabla\left(\xi v^{\epsilon}\right)\right|=\frac{\sqrt{n^{n}} \omega_{n}}{\epsilon^{n}}+O(1) \tag{66}
\end{equation*}
$$

We now estimate $Q\left(\xi v^{\epsilon}\right)$. Applying (61) to $f(a)=v_{1} \wedge \cdots \wedge v_{n}$ (where $\left.a=\left(v_{j}^{i}\right)\right)$ with $a=\xi \nabla v^{\epsilon}, b=\nabla \xi v^{\epsilon}$, we have

$$
\begin{align*}
Q\left(\xi v^{\epsilon}\right) & =\int_{\Omega} \xi v^{\epsilon} \cdot\left(\xi v^{\epsilon}\right)_{1} \wedge \cdots \wedge\left(\xi v^{\epsilon}\right)_{n} \\
& =\int_{\Omega} \xi^{n+1} v^{\epsilon} \cdot v_{1}^{\epsilon} \wedge \cdots \wedge v_{n}^{\epsilon}+O\left(\int_{R^{n}}\left|\xi v^{\epsilon}\right|\left(\left|\xi \nabla v^{\epsilon}\right|+\left|\nabla \xi v^{\epsilon}\right|\right)^{n-1}\left|\nabla \xi v^{\epsilon}\right|\right) \tag{67}
\end{align*}
$$

Recall that $Q\left(v^{\epsilon}\right) /(n+1)$ is the oriented volume of $v^{\epsilon}\left(R^{n}\right)$. So we have

$$
\begin{equation*}
Q\left(v^{\epsilon}\right)= \pm(n+1) \operatorname{vol}\left(v^{\epsilon}\left(R^{n}\right)\right)= \pm \frac{\omega_{n}}{\epsilon^{n+1}} \tag{68}
\end{equation*}
$$

Similarly to (64) and (65), we have

$$
\begin{gather*}
\int_{\Omega}\left(\xi^{n+1}-1\right) v^{\epsilon} \cdot v_{1}^{\epsilon} \wedge \cdots \wedge v_{n}^{\epsilon}=O(1) \tag{69}\\
O\left(\int_{R^{n}}\left|\xi v^{\epsilon}\right|\left(\left|\xi \nabla v^{\epsilon}\right|+\left|\nabla \xi v^{\epsilon}\right|\right)^{n-1}\left|\nabla \xi v^{\epsilon}\right|\right)=O(1) \tag{70}
\end{gather*}
$$

So (67) - (70) imply that

$$
\begin{equation*}
\left|Q\left(v^{\epsilon}\right)\right|=\frac{\omega_{n}}{\epsilon^{n+1}}+O(1) \tag{71}
\end{equation*}
$$

Similar argument applies to $Q\left(\xi v^{\epsilon}\right)$, and we have

$$
\begin{align*}
& \frac{1}{n+1} Q_{n}\left(\xi v^{\epsilon}\right)=\int_{\Omega} u \cdot\left(\xi v^{\epsilon}\right)_{1} \wedge \cdots \wedge\left(\xi v^{\epsilon}\right)_{n} \\
& =\int_{\Omega} \xi^{n} u \cdot v_{1}^{\epsilon} \wedge \cdots \wedge v_{n}^{\epsilon}+O\left(\int_{R^{n}}|u|\left(\left|\xi \nabla v^{\epsilon}\right|+\left|\nabla \xi v^{\epsilon}\right|\right)^{n-1}\left|\nabla \xi v^{\epsilon}\right|\right) \tag{72}\\
& =\int_{\Omega} \xi^{n} u \cdot v_{1}^{\epsilon} \wedge \cdots \wedge v_{n}^{\epsilon}+O(1)
\end{align*}
$$

Denote $\tilde{u}=\xi^{n} u$. Since \tilde{u} is in $C_{0}^{1, \alpha}\left(B_{2 R}\right)$ by the regularity theorem in [24], we have that for all $x \in R^{n}$,

$$
\begin{align*}
& \tilde{u}(x)=\tilde{u}(0)+\nabla \tilde{u}(0) x+O\left(\|\nabla \tilde{u}\|_{C^{\alpha}}|x|^{1+\alpha}\right) \\
& =u(0)+\nabla u(0) x+O\left(\|u\|_{C^{1, \alpha}\left(B_{2 R}\right)}|x|^{1+\alpha}\right) . \tag{73}
\end{align*}
$$

Therefore, by conformal invariance of Q_{n} and (73),

$$
\begin{align*}
\int_{\Omega} \tilde{u} \cdot v_{1}^{\epsilon} \wedge \cdots \wedge v_{n}^{\epsilon} & =\frac{1}{\epsilon^{n}} \int_{R^{n}} \tilde{u}(\epsilon x) \cdot v_{1} \wedge \cdots \wedge v_{n} d x \\
& =\frac{1}{\epsilon^{n}}\left(\int_{R^{n}}(u(0)+\epsilon \nabla u(0) x) \cdot v_{1} \wedge \cdots \wedge v_{n} d x\right)+ \\
& O\left(\epsilon^{1-n+\alpha}| | \nabla u \|_{C^{\alpha}\left(B_{2 R}\right)} \int_{|x| \leq \frac{2 R}{\epsilon}}|x|^{1+\alpha}|\nabla v|^{n}\right) . \tag{74}
\end{align*}
$$

We have

$$
\begin{equation*}
\int_{R^{n}} u(0) \cdot v_{1} \wedge \cdots \wedge v_{n} d x=0 \tag{75}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{|x| \leq \frac{2 R}{\epsilon}}|x|^{1+\alpha}|\nabla v|^{n}=O(1)+\int_{1 \leq|r| \leq \frac{2 R}{\epsilon}} r^{\alpha-n}=O(1)+O\left(\epsilon^{n-\alpha+1}\right) . \tag{76}
\end{equation*}
$$

Next we show that

$$
\begin{equation*}
\int_{R^{n}} \nabla u(0) x \cdot v_{1} \wedge \cdots \wedge v_{n} d x=c \Sigma_{i=1}^{n} \frac{\partial u}{\partial x_{i}} \cdot e_{i}=c \gamma \tag{77}
\end{equation*}
$$

Proof of (77) : By (17),

$$
\begin{aligned}
& \int_{R^{n}} \nabla u(0) x \cdot v_{1} \wedge \cdots \wedge v_{n} d x \\
& =-\frac{1}{n} \int_{R^{n}} \sum_{i=1}^{n}(\nabla u(0) x)_{i} \cdot v_{1} \wedge \cdots \wedge v_{i}^{v} \wedge \cdots \wedge v_{n} d x \\
& =-\frac{1}{n} \int_{R^{n}} \sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}} \cdot\left[e_{1} \wedge \cdots \wedge(x,-1) \wedge \cdots \wedge e_{n}\right] \frac{1}{\left(1+|x|^{2}\right)^{n}} d x \\
& =-\frac{1}{n} \int_{R^{n}} \sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}} \cdot e_{i}\right) e_{i} \cdot\left[e_{1} \wedge \cdots \wedge\left(-e_{n+1}\right) \wedge \cdots \wedge e_{n}\right] \frac{1}{\left(1+|x|^{2}\right)^{n}} d x \\
& =c^{\prime} \sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}} \cdot e_{i}=c^{\prime} \gamma,
\end{aligned}
$$

where $c^{\prime}=\int_{R^{n}} \frac{d x}{\left(1+|x|^{2}\right)^{n}}$. So (72)-(77) together imply that

$$
\begin{equation*}
\int_{\Omega} u \cdot\left(\xi v^{\epsilon}\right)_{1} \wedge \cdots \wedge\left(\xi v^{\epsilon}\right)_{n}=c^{\prime} \gamma \epsilon^{1-n}+O\left(\epsilon^{1-n+\epsilon}\right) . \tag{78}
\end{equation*}
$$

It follows from (66) (71) (440) that

$$
\begin{aligned}
& T\left(\xi v^{\epsilon}\right)=\left[\epsilon^{-n} \omega_{n}^{\frac{n}{n+1}}+O(1)\right]^{-1}\left(\epsilon^{-n} n^{n / 2} \omega_{n}+O(1)+\frac{n H c^{\prime}}{n+1} \gamma+O\left(\epsilon^{-n+1+\alpha}\right)\right) \\
& =S+c_{0} \epsilon+O\left(\epsilon^{1+\alpha}\right), \text { where } c_{0}=\frac{n H c}{n+1} \gamma<0 .
\end{aligned}
$$

This finishes the proof of (60).
Proof of Proposition 15: Let ξv^{ϵ} be as in the proof Proposition 16 such that $T\left(\xi v^{\epsilon}\right)<S$. It is easy to check the $\pm \operatorname{sign}$ in (68) is $(-1)^{n}$. Take $v=\xi v^{\epsilon}$ for n odd. Take $v=-\xi v^{\epsilon}$ for n even; so $T(v)=T\left(\xi v^{\epsilon}\right)$ and $Q(v)=-Q\left(\xi v^{\epsilon}\right)$. Thus for any $n, T(v)<S$ and $Q(v)<0$. We may also assume that $\Phi(v) \leq 0$, by replacing v by λv for large $\lambda>0$. Consider

$$
\begin{equation*}
\Phi^{*}(t v) \equiv E_{3}(t v)+\frac{n H}{n+1} Q(t v)=t^{n} E_{3}(v)+\frac{n H}{n+1} t^{n+1} Q(v) \tag{79}
\end{equation*}
$$

It is easy to check that Φ^{*} has a maximum at $t=-\frac{E_{3}(v)}{Q(v) H}$, with maximum value

$$
\begin{equation*}
\Phi^{*}(t v)=\left[\frac{E_{3}(v)}{|Q(v)|^{\frac{n}{n+1}}}\right]^{n+1} \frac{1}{|H|^{n}(n+1)}<\frac{S^{n+1}}{|H|^{n}(n+1)} \tag{80}
\end{equation*}
$$

To show (41), we need to assume that u_{0} is small, say, $\int_{\Omega}\left|\nabla u_{0}\right|^{n} \leq 1$, then by (40)

$$
\begin{align*}
\left|E_{2}(v)\right| & \leq C \int_{\Omega} \sum_{i=1}^{n-1}\left|\nabla u_{0}\right|^{n-i}|\nabla v|^{i} \\
& \leq C \sum_{i=1}^{n-1}\left(\int_{\Omega}\left|\nabla u_{0}\right|^{n}\right)^{\frac{n-i}{n}}\left(\int_{\Omega}|\nabla v|^{n}\right)^{\frac{i}{n}} \tag{81}\\
& \leq C\left(\int_{\Omega}\left|\nabla u_{0}\right|^{n}\right)^{\frac{1}{n}} \sum_{i=1}^{n-1}\left(\int_{\Omega}|\nabla v|^{n}\right)^{\frac{i}{n}}
\end{align*}
$$

It follows

$$
\begin{align*}
\Phi(t v) & \leq t^{n} E_{3}(v)+\frac{n H}{n+1} t^{n+1} Q(v)+C\left(\int_{\Omega}\left|\nabla u_{0}\right|^{n}\right)^{\frac{1}{n}} \sum_{i=1}^{n-1} t^{i}\left(\int_{\Omega}|\nabla v|^{n}\right)^{\frac{i}{n}} \\
& \equiv \Phi^{* *}(t, v) . \tag{82}
\end{align*}
$$

By the construction of v, we have that

$$
\begin{align*}
& \epsilon^{n} E_{3}(v)=\sqrt{n^{n}} \omega_{n}+O(\epsilon) ; \epsilon^{n} \int_{\Omega}|\nabla v|^{n}=\sqrt{n^{n}} \omega_{n}+O(\epsilon) ; \tag{83}\\
& \epsilon^{n+1} Q(v)=-\omega_{n}+O\left(\epsilon^{n+1}\right) .
\end{align*}
$$

Therefore, there are positive numbers C_{1}, C_{2}, C_{3}, such that for any number $\beta>0$,

$$
\begin{align*}
\Phi^{* *}(\beta \epsilon, v) & =\beta^{n} \epsilon^{n} E_{3}(v)+\frac{n H}{n+1} \beta^{n+1} \epsilon^{n+1} Q(v)+ \\
& C\left(\int_{\Omega}\left|\nabla u_{0}\right|^{n}\right)^{\frac{1}{n}} \sum_{i=1}^{n-1} \beta^{i} \epsilon^{i}\left(\int_{\Omega}|\nabla v|^{n}\right)^{\frac{i}{n}} \tag{84}\\
& \leq C_{1} \beta^{n}-C_{2} \beta^{n+1}+C_{3}\left(\int_{\Omega}\left|\nabla u_{0}\right|^{n}\right)^{\frac{1}{n}} \sum_{i=1}^{n-1} \beta^{i} .
\end{align*}
$$

It follows that there is a β^{*} such that $\Phi^{* *}(\beta \epsilon, v) \leq 0$ for all $0<\epsilon \ll 1$ and $\beta \geq \beta^{*}$. By (82), we have,

$$
\begin{align*}
\sup _{0 \leq t} \Phi(t v) & \leq \sup _{0 \leq t \leq \beta^{*} \epsilon} \Phi^{* *}(t, v) \\
& \leq \sup _{0 \leq t} \Phi^{*}(t, v)+\sup _{0 \leq t \leq \beta^{*} \epsilon} C\left(\int_{\Omega}\left|\nabla u_{0}\right|^{n}\right)^{\frac{1}{n}} \sum_{i=1}^{n-1} t^{i}\left(\int_{\Omega}|\nabla v|^{n}\right)^{\frac{i}{n}} \\
& \leq \sup _{0 \leq t} \Phi^{*}(t, v)+C\left(\int_{\Omega}\left|\nabla u_{0}\right|^{n}\right)^{\frac{1}{n}} \sum_{i=1}^{n-1} \beta^{* i} \epsilon^{i}\left(\int_{\Omega}|\nabla v|^{n}\right)^{\frac{i}{n}} \\
& \leq \sup _{0 \leq t} \Phi^{*}(t, v)+C_{4}\left(\int_{\Omega}\left|\nabla u_{0}\right|^{n}\right)^{\frac{1}{n}} \tag{85}
\end{align*}
$$

where C_{4} depends on β^{*}. Since $\sup _{0 \leq t} \Phi^{*}(t, v)<\frac{S^{n+1}}{H^{n}(n+1)}$, $\sup _{0 \leq t} \Phi(t v)<$ $\frac{S^{n+1}}{H^{n}(n+1)}$, if $\int_{\Omega}\left|\nabla u_{0}\right|^{n}$ is small enough.

4 Regularity of Conformal Solutions

Our result is
Theorem 17 If u is a conformal solution of (1) and f satisfies (2), then $u \in C^{1, \alpha}(\Omega)$ for some $\alpha \in(0,1)$. If $u=\eta$ on $\partial \Omega$ and $\eta \in C^{0}(\partial \Omega)$, then $u \in C^{0}(\bar{\Omega})$.

When $n=2$, this theorem was proved by Grüter in 1980 [16]. We will use the main idea of the proof in [16].

Consider the set G of good points of u defined by

$$
\begin{aligned}
G=\{x \in \Omega: & u \text { is approximately differentiable at } x, \text { and } \\
& \left.x \text { is a Lebesgue point of }|\nabla u|^{n}, \text { and }|\nabla u|(x) \neq 0\right\} .
\end{aligned}
$$

Here u is approximately differentiable at a point x_{0} with approximate differential $\nabla u\left(x_{0}\right)$, by definition, if there is a $u_{0} \in R^{k}$ such that for every $\epsilon>0$,

$$
\Phi^{n}\left[L^{n}\left\lfloor\Omega \backslash\left\{x:\left|u(x)-u_{0}-\nabla u\left(x_{0}\right)\left(x-x_{0}\right)\right| \leq \epsilon\left|x-x_{0}\right|\right\}, x_{0}\right]=0,\right.
$$

where Φ^{n} denotes the n-dimensional density and $L^{n}\lfloor\Omega$ is the Lebesgue measure, restricted to Ω.

We will need the following property for functions in $W^{1, n}\left(\Omega, R^{k}\right)$.
Proposition 18 ([12] [Theorem 4.5.9]) If $u \in W^{1, n}\left(\Omega, R^{k}\right)$, then u has weak derivative and approximate differential almost everywhere, and when both exist, they coincide.

For a proof, see [12]. Next, we have
Lemma 19 Suppose $u \in W^{1, n}\left(\Omega, R^{k}\right)$ and $B \subset \Omega$ is a ball. Then

$$
\begin{equation*}
\operatorname{osc}_{B} u \leq 4 \max \left\{\alpha_{1}, \alpha_{2}\right\}, \tag{86}
\end{equation*}
$$

where $\alpha_{1}=\operatorname{osc}_{\partial B} u, \alpha_{2}=\sup _{y \in G \cap B} \inf _{x \in \partial B}|u(x)-u(y)|$.

Proof: The proof is similar to that in [16]. Denote $\alpha=\max \left\{\alpha_{1}, \alpha_{2}\right\}$. Take a point $x_{1} \in \partial B$. Define $z=u-u\left(x_{1}\right)$ and $v=\max \{|z|-2 \alpha, 0\}$. Then $v \in W_{0}^{1, n}(\Omega)$. From the definitions of α_{1}, α_{2}, one sees that $v=0$ on $G \cap B$. It follows that $\nabla v(y)=0$ if $y \in G \cap B$. On the complement of $G \cap B, \nabla v=0$ almost everywhere. Therefore $\nabla v=0$ almost everywhere on B, and so v must be a constant, which is zero.

We also need the Courant-Lebesgue Lemma.
Lemma 20 Suppose $u \in W^{1, n}\left(\Omega, R^{k}\right)$ and $B(x, r) \subset \Omega, 0<r<1$. Then there is a constant $C>0$ and some $\delta \in\left[\frac{r}{2}, r\right]$ such that

$$
\begin{equation*}
\underset{\partial B(x, \delta)}{O S C} u \leq C K^{1 / n}, \quad \text { where } K=\int_{B(x, r)}|\nabla u|^{n} . \tag{87}
\end{equation*}
$$

Proof: Recall that for $y \in B(x, r),|\nabla u(y)|^{2} \geq \rho^{-2}\left|\nabla_{\theta} u(y)\right|^{2}$, where $\rho=$ $|y-x|$ and $\theta=\frac{y-x}{\rho} \in S^{n-1}$. It follows

$$
\begin{equation*}
\int_{\frac{r}{2}}^{r} \int_{S^{n-1}} \rho^{-1}\left|\nabla_{\theta} u(y)\right|^{n} d \theta d \rho \leq K \tag{88}
\end{equation*}
$$

By Fubini's theorem, there is a $\delta \in\left[\frac{r}{2}, r\right]$ such that

$$
\begin{equation*}
\int_{\frac{r}{2}}^{r} \int_{S^{n-1}} \delta^{-1}\left|\nabla_{\theta} u(y)\right|^{n} d \theta d \rho=\frac{r}{2 \delta} \int_{S^{n-1}}\left|\nabla_{\theta} u(y)\right|^{n} d \theta \tag{89}
\end{equation*}
$$

Since $\delta \leq r$, (88) (89) imply that $\int_{S^{n-1}}\left|\nabla_{\theta} u(y)\right|^{n} d \theta \leq 2 K$. (87) follows from Sobolev embedding theorem $W^{1, n}\left(S^{n-1}, R^{k}\right) \hookrightarrow C^{1 / n}$.

This lemma gives a control of the oscillation of u on the boundary $\partial B(x, \delta)$. Our following step is to estimate the interior oscillation. We need some propositions.

Proposition 21 Suppose $u \in W^{1, n}\left(\Omega, R^{k}\right)$ is conformal and $B \subset \Omega$ is an open subset. Define $D_{\sigma}=B \cap\left\{x:\left|u(x)-u\left(x_{0}\right)\right|<\sigma\right\}$ for $x_{0} \in B \cap G$ and $\sigma>0$. Then

$$
\begin{equation*}
\underset{\sigma \rightarrow 0}{\limsup } \sigma^{-n} \int_{D_{\sigma}}|\nabla u|^{n} \geq n^{\frac{n}{2}-1} \omega_{n-1}, \tag{90}
\end{equation*}
$$

where ω_{n-1} is the area of the sphere S^{n-1}.

Remark 22 This Proposition was proved by Grüter [16] when $n=2$.
Remark 23 Without the assumption that u is conformal, then (90) still holds, with the right hand being replaced by $n^{-1} \omega_{n-1}$.

Proof: We may assume $u\left(x_{0}\right)=0$. For $\epsilon, \sigma>0$, define

$$
\begin{aligned}
& T_{\epsilon}=B \backslash\left\{x:\left|u(x)-\nabla u\left(x_{0}\right)\left(x-x_{0}\right)\right| \leq \frac{\epsilon}{\sqrt{n}}\left|x-x_{0}\right|\right\}, \\
& B_{\epsilon}=B \cap\left\{x:\left|x-x_{0}\right|<r_{\epsilon}\right\} \text {, where } r_{\epsilon}=\frac{\sigma \sqrt{n}}{\left|\nabla u\left(x_{0}\right)\right|+\epsilon} .
\end{aligned}
$$

We claim

$$
B_{\epsilon} \backslash T_{\epsilon} \subset D_{\sigma} \backslash T_{\epsilon} .
$$

Indeed, if $x \in B_{\epsilon} \backslash T_{\epsilon}$, then

$$
\left|u(x)-\nabla u\left(x_{0}\right)\left(x-x_{0}\right)\right| \leq \frac{\epsilon}{\sqrt{n}}\left|x-x_{0}\right| ;
$$

while the conformality condition (8) implies that

$$
\left|\nabla u\left(x_{0}\right)\left(x-x_{0}\right)\right|^{2} \leq \frac{1}{n}\left|\nabla u\left(x_{0}\right)\right|^{2}\left|x-x_{0}\right|^{2} .
$$

Therefore,

$$
|u(x)| \leq \frac{1}{\sqrt{n}}\left(\left|\nabla u\left(x_{0}\right)\right|+\epsilon\right)\left|x-x_{0}\right|<\sigma,
$$

and so $x \in D_{\sigma} \backslash T_{\epsilon}$.
Note that for any $a, b \geq 0, \epsilon>0$, and $p>1$, there holds

$$
a^{p} \geq(1-\epsilon) b^{\epsilon}-\left(\epsilon^{-1}-1\right)\left|a^{p}-b^{p}\right| .
$$

(For a proof, note that $\epsilon b^{p}+\epsilon^{-1}\left|a^{p}-b^{p}\right| \geq 2 b^{p / 2}\left|a^{p}-b^{p}\right|^{1 / 2} \geq\left|a^{p}-b^{p}\right|-$ $\left(a^{p}-b^{p}\right)$.) Using this inequality, we obtain

$$
\begin{align*}
\sigma^{-n} \int_{D_{\sigma}}|\nabla u(x)|^{n} \geq & \sigma^{-n} \int_{B_{\epsilon} \backslash T_{\epsilon}}|\nabla u(x)|^{n} \\
\geq & \sigma^{-n}(1-\epsilon) \int_{B_{\epsilon} \backslash T_{\epsilon}}\left|\nabla u\left(x_{0}\right)\right|^{n}- \tag{91}\\
& -\sigma^{-n}\left(\epsilon^{-1}-1\right) \int_{B_{\epsilon} \backslash T_{\epsilon}}\left(|\nabla u(x)|^{n}-\left|\nabla u\left(x_{0}\right)\right|^{n}\right) .
\end{align*}
$$

We look at each term in (91) as $\sigma \rightarrow 0$. For the first term,

$$
\begin{align*}
& \sigma^{-n}(1-\epsilon) \int_{B_{\epsilon} \backslash T_{\epsilon}}\left|\nabla u\left(x_{0}\right)\right|^{n}=\sigma^{-n}(1-\epsilon)\left|\nabla u\left(x_{0}\right)\right|^{n} L^{n}\left(B_{\epsilon} \backslash T_{\epsilon}\right) \tag{92}\\
\rightarrow & \frac{\omega_{n-1}}{n} \sqrt{n^{n}}(1-\epsilon)\left(\frac{\left|\nabla u\left(x_{0}\right)\right|}{\left|\nabla u\left(x_{0}\right)\right|+\epsilon}\right)^{n}\left(1-\Phi^{n}\left(L\left\lfloor T_{\epsilon}, x_{0}\right)\right)\right. \\
= & \frac{\omega_{n-1}}{n} \sqrt{n^{n}}(1-\epsilon)\left(\frac{\left|\nabla u\left(x_{0}\right)\right|}{\left|\nabla u\left(x_{0}\right)\right|+\epsilon}\right)^{n} .
\end{align*}
$$

For the second term in (91), using that x_{0} is a Lebesgue point of $|\nabla u|^{n}$, we have, for fixed ϵ,

$$
\begin{align*}
& \left.\left.\sigma^{-n}\left(\epsilon^{-1}-1\right) \int_{B_{\epsilon} \backslash T_{\epsilon}}| | \nabla u(x)\right|^{n}-\left|\nabla u\left(x_{0}\right)\right|^{n}\right) \mid \\
& \left.\leq\left.\frac{\left(\epsilon^{-1}-1\right) \sqrt{n^{n}}}{\left(\left|\nabla u\left(x_{0}\right)\right|+\epsilon\right)^{n} L^{n}\left(B_{\epsilon}\right)} \int_{B_{\epsilon} \backslash T_{\epsilon}}| | \nabla u(x)\right|^{n}-\left|\nabla u\left(x_{0}\right)\right|^{n} \right\rvert\, \tag{93}\\
& \rightarrow 0 \text { as } \sigma \rightarrow 0 .
\end{align*}
$$

Now taking the limit in (91) and using (92) (93), we obtain (90).
Theorem 24 Suppose $B \subset \Omega$ is a ball, $x_{0} \in B \cap G$, and $\Sigma>0$ is a number such that

$$
\begin{gather*}
2 n \Lambda \Sigma \leq 1, \tag{94}\\
\operatorname{dist}\left(u(\partial B), u\left(x_{0}\right)\right)>\Sigma, \tag{95}
\end{gather*}
$$

where Λ is as in (2). Then

$$
\begin{equation*}
\int_{B}|\nabla u|^{n} \geq \frac{1}{2} \omega_{n-1} n^{\frac{n}{2}-1} \Sigma^{n} . \tag{96}
\end{equation*}
$$

Corollary 25 Suppose $B \subset \Omega$ is a ball such that

$$
\int_{B}|\nabla u|^{n} \leq \frac{\omega_{n-1}}{2^{\bar{n}+2} n^{n / 2+1} \Lambda^{n}} .
$$

Then for any $x_{0} \in B \cap G$,

$$
\operatorname{dist}\left(u(\partial B), u\left(x_{0}\right)\right) \leq \frac{1}{\omega_{n-1} n^{\frac{n}{2}-1}}\left(\int_{B}|\nabla u|^{n}\right)^{1 / n} .
$$

Proof of Corollary 25: Let

$$
\Sigma=\left(\frac{4}{\omega_{n-1} n^{n / 2-1}} \int_{B}|\nabla u|^{n}\right)^{1 / n}
$$

Then the condition (94) is satisfied, but the conclusion (96) does not hold, therefore, (95) must not hold.
Proof of Theorem 24: For $\sigma \in(0, \Sigma]$, denote

$$
D_{\sigma}=B \cap\left\{x:\left|u(x)-u\left(x_{0}\right)\right|<\sigma\right\} .
$$

Let $\lambda \in C_{0}^{1}(R,[0,1])$ be a function such that $\lambda(t)=0$ for $t \leq 0$. For $\rho \in(0, \Sigma)$, define

$$
\eta=\lambda(\rho-|u|) u .
$$

From (94), we have $\eta \in W_{0}^{1, n}\left(B, R^{k}\right) \cap L^{\infty}$. Multiplying η to the equation (1) and integrating by parts, we obtain

$$
\begin{align*}
\int_{D_{\rho}}|\nabla u|^{n} \lambda(\rho & -|u|)-\int_{D_{\rho}}|\nabla u|^{n-2} \lambda^{\prime}(\rho-|u|)\left|\nabla u \cdot \frac{u}{|u|}\right|^{2} \\
& =\int_{D_{\rho}} f(x, u, \nabla u) u \lambda(\rho-|u|) \tag{97}
\end{align*}
$$

Define

$$
\Phi(\rho)=\frac{1}{n} \int_{D_{\rho}}|\nabla u|^{n} \lambda(\rho-|u|) .
$$

Then we have

$$
\begin{equation*}
\Phi^{\prime}(\rho) \geq \frac{1}{n} \int_{D_{\rho}}|\nabla u|^{n} \lambda^{\prime}(\rho-|u|) \tag{98}
\end{equation*}
$$

From the conformality of u, it follows that $|\nabla u \cdot u|^{2} \leq \frac{1}{n}|\nabla u|^{2}|u|^{2}$. The property of λ implies that

$$
\lambda^{\prime}(\rho-|u|)|u| \leq \rho \lambda^{\prime}(\rho-|u|) .
$$

Therefore, we have that

$$
\begin{gather*}
\int_{D_{\rho}}|\nabla u|^{n-2} \lambda^{\prime}(\rho-|u|)\left|\nabla u \cdot \frac{u}{|u|}\right|^{2} \leq \frac{1}{n} \int_{D_{\rho}}|\nabla u|^{n} \lambda^{\prime}(\rho-|u|)|u| \tag{99}\\
\leq \frac{1}{n} \rho \int_{D_{\rho}}|\nabla u|^{n} \lambda^{\prime}(\rho-|u|) \leq \rho \Phi^{\prime}(\rho) .
\end{gather*}
$$

Also, we have

$$
\begin{align*}
\int_{D_{\rho}} f(x, u, \nabla u) u \lambda(\rho-|u|) & \leq \Lambda \int_{D_{\rho}}|\nabla u|^{n} \lambda(\rho-|u|)|u| \\
& \leq \Lambda \int_{D_{\rho}}|\nabla u|^{n} \int_{0}^{\rho} \lambda^{\prime}(\sigma-|u|)|u| d \sigma \\
& \leq \Lambda \int_{0}^{\rho} \sigma\left(\int_{D_{\rho}}|\nabla u|^{n} \lambda^{\prime}(\sigma-|u|)|u|\right) d \sigma \\
& \leq n \Lambda \int_{0}^{\rho} \sigma \Phi^{\prime}(\sigma) d \sigma . \tag{100}
\end{align*}
$$

Thus (97) together with (99) and (100) yields

$$
\begin{equation*}
n \Phi(\rho)-\rho \Phi^{\prime}(\rho) \leq n \Lambda \int_{0}^{\rho} \sigma \Phi^{\prime}(\sigma) d \sigma \tag{101}
\end{equation*}
$$

This can be rewritten as

$$
\begin{equation*}
-\left(\frac{\Phi(\rho)}{\rho^{n}}\right)^{\prime} \leq \frac{n \Lambda}{\rho^{n+1}} \int_{0}^{\rho} \sigma \Phi^{\prime}(\sigma) d \sigma \leq n \Lambda \frac{\Phi(\rho)}{\rho^{n}} . \tag{102}
\end{equation*}
$$

This differential inequality implies that $e^{n \Lambda \rho} \frac{\Phi(\rho)}{\rho^{n}}$ is increasing in ρ; in particular, $\frac{\Phi(\rho)}{\rho^{n}}$ has a limit as $\rho \rightarrow 0$. Furthermore, for $0<\rho_{1} \leq \rho_{2} \leq \Sigma$, by integrating 102 from ρ_{1} to ρ_{2}, we have

$$
\begin{equation*}
\frac{\Phi\left(\rho_{1}\right)}{\rho_{1}^{n}} \leq \frac{\Phi\left(\rho_{2}\right)}{\rho_{2}^{n}}+n \Lambda \int_{0}^{\rho_{2}} \frac{\Phi(\rho)}{\rho^{n}} d \rho \tag{103}
\end{equation*}
$$

The second term of (103) can be estimated by integration by parts and using (101)

$$
\begin{align*}
\int_{0}^{\rho_{2}} \frac{\Phi(\rho)}{\rho^{n}} d \rho & \leq \frac{\Phi\left(\rho_{2}\right)}{\rho_{2}^{n-1}}+\int_{0}^{\rho_{2}} \rho\left(-\frac{\Phi(\rho)}{\rho^{n}}\right)^{\prime} d \rho \\
& \leq \frac{\Phi\left(\rho_{2}\right)}{\rho_{2}^{n-1}}+n \Lambda \int_{0}^{\rho_{2}} \frac{1}{\rho^{n}} \int_{0}^{\rho} \sigma \Phi^{\prime}(\sigma) d \sigma d \rho \tag{104}\\
& \leq \frac{\Phi\left(\rho_{2}\right)}{\rho_{2}^{n-1}}+n \Lambda \int_{0}^{\rho_{2}} \frac{\Phi(\rho)}{\rho^{n-1}} d \rho \\
& \leq \frac{\Phi\left(\rho_{2}\right)}{\rho_{2}^{n-1}}+n \Lambda \rho_{2} \int_{0}^{\rho_{2}} \frac{\Phi(\rho)}{\rho^{n}} d \rho
\end{align*}
$$

From the assumption, $n \Lambda \rho_{2} \leq n \Lambda \Sigma \leq \frac{1}{2}$. Thus it follows that from (104)

$$
\begin{equation*}
\int_{0}^{\rho_{2}} \frac{\Phi(\rho)}{\rho^{n}} d \rho \leq 2 \frac{\Phi\left(\rho_{2}\right)}{\rho_{2}^{n-1}} \tag{105}
\end{equation*}
$$

Now (103) and (105) imply that

$$
\begin{equation*}
\frac{\Phi\left(\rho_{1}\right)}{\rho_{1}^{n}} \leq \frac{\Phi\left(\rho_{2}\right)}{\rho_{2}^{n}}+2 n \Lambda \frac{\Phi\left(\rho_{2}\right)}{\rho_{2}^{n-1}} \leq 2 \frac{\Phi\left(\rho_{2}\right)}{\rho_{2}^{n}} . \tag{106}
\end{equation*}
$$

Given $\epsilon>0$, we choose $\lambda(t)$ with the additional property that $\lambda(t)=1$ for $t \geq \epsilon \rho_{1}$. Then it easy to see

$$
\begin{equation*}
\frac{1}{n} \int_{D_{\rho_{1}(1-\epsilon)}}|\nabla u|^{n} \leq \Phi\left(\rho_{1}\right), \quad \Phi\left(\rho_{2}\right) \leq \frac{1}{n} \int_{D_{\rho_{2}}}|\nabla u|^{n} . \tag{107}
\end{equation*}
$$

Apply (106) with $\rho_{2}=\Sigma$, and use (107), we then obtain

$$
\begin{equation*}
\frac{\int_{D_{\rho_{1}(1-\epsilon)}}|\nabla u|^{n}}{\rho_{1}^{n}} \leq 2 \frac{\int_{D_{\Sigma}}|\nabla u|^{n}}{\Sigma^{n}} \leq 2 \frac{\int_{B}|\nabla u|^{n}}{\Sigma^{n}} . \tag{108}
\end{equation*}
$$

Let $\rho_{1} \rightarrow 0$ in (108) and apply Proposition 21, and then send $\epsilon \rightarrow 0$. (96) then follows.

Proof of Theorem 17. We divide the proof into several steps. The first step, showing the continuity of u, is the essential one. The other steps are standard.
(a). u is continuous. Fix $x_{0} \in \Omega$. Choose $R>0$ small enough such that $B\left(x_{0}, R\right) \subset \Omega$ and $\int_{B\left(x_{0}, R\right)}|\nabla u|^{n} \leq \frac{\omega_{n-1}}{2^{\bar{n}+2} n^{n / 2+1} \Lambda^{n}}$. By the Courant-Lebesgue Lemma 20, there is a $\delta \in\left[\frac{R}{2}, R\right]$ such that

$$
\underset{\partial B\left(x_{0}, \delta\right)}{\mathrm{OSC}} u \leq C\left(\int_{B\left(x_{0}, R\right)}|\nabla u|^{n}\right)^{1 / n} \equiv \alpha_{1}(R) .
$$

Because $\int_{B\left(x_{0}, \delta\right)}|\nabla u|^{n} \leq \int_{B\left(x_{0}, R\right)}|\nabla u|^{n}$, by Corollary 25, for any $x_{0} \in B \cap$ $G, B=B\left(x_{0}, \delta\right)$,

$$
\text { dist }\left(u(\partial B), u\left(x_{0}\right)\right) \leq \frac{1}{\omega_{n-1} n^{\frac{n}{2}-1}}\left(\int_{B\left(x_{0}, R\right)}|\nabla u|^{n}\right)^{1 / n} \equiv \alpha_{2}(R) .
$$

Now Lemma 19 implies that

$$
\begin{equation*}
\operatorname{osc}_{B\left(x_{0}, \delta\right)} u \leq 4 \max \left\{\alpha_{1}(R), \alpha_{2}(R)\right\} \rightarrow 0 \text { as } R \rightarrow 0 . \tag{109}
\end{equation*}
$$

In particular, $\operatorname{osc}_{B\left(x_{0}, R / 2\right)} u \rightarrow 0$ as $R \rightarrow 0$. So u is continuous at x_{0}.
(b). u is C^{β} for some $\beta \in(0,1)$. We claim that if $x_{0} \in W$ and $R>0$ such that $B\left(x_{0}, R\right) \subset \Omega$ and $\operatorname{osc}_{B\left(x_{0}, R\right)} u \Lambda<1$, then there is a number $\tau \in(0,1)$ so that for every ball $B(x, r) \subset B\left(x_{0}, R\right)$

$$
\begin{equation*}
\int_{B(x, r / 2)}|\nabla u|^{n} \leq \tau \int_{B(x, r)}|\nabla u|^{n} . \tag{110}
\end{equation*}
$$

By iteration, we have for some constants C and $\gamma \in(0,1)$,

$$
\int_{B(x, r)}|\nabla u|^{n} \leq C r^{\gamma} \text { for } x \in B\left(x_{0}, R / 2\right) \text { and } r \in(0, R / 2) .
$$

That u is C^{β} for some $\beta \in(0,1)$ follows from Morrey's Lemma [23][3.5.2]. The proof of (110) is a standard "hole-filling" method. Let \bar{u} be the mean value of u on $B(x, r) \backslash B(x, r / 2)$ and $\eta \in C_{0}^{1}(B(x, r),[0,1])$ be a cut-off function such that $\eta=1$ on $B(x, r / 2)$ and $|\nabla \eta| \leq 3 / r$. Take $\phi=(u-\bar{u}) \eta$, then $\phi \in W_{0}^{1, n}\left(B(x, r), R^{k}\right)$. Multiply ϕ to the equation (1) and integrate. We then get

$$
\begin{align*}
& \left.\left|\int_{B(x, r)} \eta\right| \nabla u\right|^{n}+\int_{B(x, r)}|\nabla u|^{n-2} \nabla u \nabla \eta(u-\bar{u}) \mid \tag{111}\\
= & \left|\int_{B(x, r)} f(x, u, \nabla u) \eta(u-\bar{u})\right| \\
\leq & \operatorname{osc}_{B\left(x_{0}, R\right)} u \Lambda \int_{B(x, r)}|\nabla u|^{n} .
\end{align*}
$$

By Hölder and Poincare's inequalities, we estimate the second term of (111),

$$
\begin{align*}
& \left.\left|\int_{B(x, r)}\right| \nabla u\right|^{n-2} \nabla u \nabla \eta(u-\bar{u}) \mid \\
\leq & C_{1}\left(\int_{B(x, r) \backslash B(x, r / 2)}|\nabla u|^{n}\right)^{(n-1) / n}\left(\frac{1}{r} \int_{B(x, r) \backslash B(x, r / 2)}|u-\bar{u}|^{n}\right)^{1 / n} \\
\leq & C_{2} \int_{B(x, r) \backslash B(x, r / 2)}|\nabla u|^{n}, \tag{112}
\end{align*}
$$

where C_{1} and C_{2} depend only on n and k. Put (112) back to (111) and note the property of η. It follows

$$
\int_{B(x, r / 2)}|\nabla u|^{n}-C_{2} \int_{B(x, r) \backslash B(x, r / 2)}|\nabla u|^{n} \leq \operatorname{osc}_{B\left(x_{0}, R\right)} u \Lambda \int_{B(x, r)}|\nabla u|^{n}
$$

or

$$
\left(C_{2}+1\right) \int_{B(x, r / 2)}|\nabla u|^{n} \leq\left(C_{2}+\operatorname{osc}_{B\left(x_{0}, R\right)} u \Lambda\right) \int_{B(x, r)}|\nabla u|^{n}
$$

Let $\tau=\left(C_{2}+\right.$ osc $\left._{B\left(x_{0}, R\right)} u \Lambda\right) /\left(C_{2}+1\right)$. Then (43) follows.
(c) . u is $C^{1, \alpha}$ for some $\alpha \in(0,1)$. For the proof of $C^{1, \alpha}$ regularity based on C^{β}, we refer [17] or [13].
(d). u is continuous up to $\partial \Omega$. This was proved in [24] [Theorem 4.1].

Acknowledgement. The authors wish to thank M. Fuchs for bring up their attention to his results in [10][14][9] and other works on surfaces with prescribed mean curvature vectors and on n-harmonic maps.

References

[1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rat. Mech. Anal. 86 (1984) 125-145.
[2] F. Almgren, Optimal isoperimetric inequalities. Indiana University Mathematical Journal, No. 3, Vol. 35 (1986) 451-547.
[3] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications. J. Funct. anal. 14 (1973) 349-381.
[4] F. Bethuel, On the singular set of stationary harmonic maps. Man. Math. 78 (1993), no.4, 417-443.
[5] F. Bethuel, Un résultat de régularité pour les solutions de l'équation des surfaces á courbure moyenne prescrite. C. R. Acad. Sci. Paris, t. 314, Série I (1992) 1003-1007.
[6] H. Brezis and J.-M. Coron, Multiple solutions of H-systems and Rellich's conjecture. Comm. Pure Appl. Math. 37 (1984) 149-187.
[7] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure \& Appl. Math. Vol. XXXVI (1983) 437-477.
[8] B. Dacorogna, Direct methods in the calculus of variations. Springer, Berlin-Heildelberg-New York (1989).
[9] F. Duzaar and M. Fuchs, On removable singularities of p-harmonic maps, Ann. Inst. Henri Poincare, Vol. 7, 5 (1990) 385-405.
[10] F. Duzaar and M. Fuchs, Existenz und Regularität von Hyperflächen mit vorgeschriebener mittlerer krummung. Analysis no.2-3, 10 (1990) 193-230.
[11] L. C. Evans, Partial regularity for stationary harmonic maps into spheres. Arch. Rat. Mech. Anal. 116 (1991) 101-113.
[12] H. Federer, Geometric Measure Theory. Grundelhren 153, Berlin-Heidelberg-New York, 1969.
[13] M. Fuchs, p-harmonic maps obstacle problems, Part 1: Partial regularity Theory. Annali Mat. Pura Appl. 4, 156(1990) 127-158.
[14] M. Fuchs, The blow-up of p-harmonic maps. Manuscripta Math. 81 (1993) 89-94.
[15] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. Math. Studies 105, Princeton Univ. Press, Princeton (1983).
[16] M. Grüter, Regularity of weak H-surfaces. J. für reine u. angew. Math. 329 (1981) 1-15.
[17] R. Hardt and F.-H. Lin, Mappings minimizing the L^{p} norm of gradient. Comm. Pure Appl. Math. Vol. XL (1987) 555-588.
[18] R. Hardt, F.-H. Lin and L. Mou, Strong convergence of p-harmonic mappings. Progress in partial differential equations: the Metz surveys 3, edited by M. Chipot, J.S.J. Paulin and I. Shafris. Longman Scientific Technical, 1994.
[19] F. Hélein, Regularite des applications faiblement harmoniques entre une surface et variete riemannienne, CRAS, Paris 312 (1991) 591-596.
[20] E. Heinz, Ein Regularitätssatz für schwache Lösungen nichtlinearer elliptischer Systeme. Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl. II, 1 (1977).
[21] S. Hildebrandt, On the Plateau problem for surfaces of constant mean curvature. Comm. Pure Appl. Math. 23 (1970) 97-114.
[22] J. Lewis, Smoothness of certain degenerate elliptic systems. Proc. Amer. Math. Soc. 80 (1980) 259-265.
[23] C. B. Morrey, Multiple integrals in the calculus of variations. Berlin-Heidelberg-New York, 1966.
[24] L. Mou and P. Yang, Regularity of n-harmonic maps. Journal of Geometric Analysis. 6(1996), no. 1, 91-112.
[25] R. Schoen, Analytic aspects of the harmonic map problems, in "Seminar on Nonlinear PDE" edited by S. S. Chern, Springer-Verlag, New York, Berlin, Heidelberg, 1984.
[26] R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps. Jour. Diff. Geom. 17 (1982) 307-335.
[27] Steffen, On the existence of surfaces with prescribed mean curvature and boundary. Math. Z. 146 (1976) 113-135.
[28] M. Struwe, Plateau's problem and the calculus of variations. Princeton University Press, Mathematical Notes 35 (1988).
[29] M. Struwe, Non-uniqueness in the Plateau problem for surfaces of constant mean curvature. Arch. Rat. Mech. Anal. 93 (1986) 135-157.
[30] T. Toro and C.Y. Wang, Compactness properties of weakly p-harmonic mapping into homogeneous spaces. Ind. Univ. Math. Jour. Vol. 44, No. 1 (1995).
[31] H. C. Wente, An existence theorem for surface of constant mean curvature. J. Math. Anal. Appl. 26 (1969), 318-344.
[32] H. C. Wente, The Dirichlet problem with a volume constraint. Man. Math. 11 (1974) 141-157.
[33] H. C. Wente, Large solutions to volume constrained Plateau problem. Arch. Rat. Mech. Anal. 75 (1980) 59-77.
L.M.: Department of Mathematics, University of Iowa, Iowa City, IA 52242 mou@math.uiowa.edu Current address: Department of Mathematics, Bradley University, Peoria, IL 61625 mou@bradley.bradley.edu
P.Y.: Department of Mathematics, University of Southern California, Los Angeles, CA 90089
pyang@math.usc.edu

