Multiple Solutions and Regularity of H-systems

Libin Mou and Paul Yang

April 1994

Abstract

The main result of this paper proves the existence of multiple solutions to a class of generalized constant mean curvature equations, called H-systems. Also contained is a regularity for conformal nharmonic maps.

1 Introduction

In this paper, we consider some systems of the form

$$\operatorname{div}(|\nabla u|^{n-2}\nabla u) = f(u, \nabla u), \tag{1}$$

where $u \in W^{1,n}(\Omega, \mathbb{R}^k)$, $n, k \geq 2$; $\Omega \subset \mathbb{R}^n$ is a bounded smooth domain, and $f: \mathbb{R}^k \times \mathbb{R}^{nk} \to \mathbb{R}^k$ is a smooth function. We assume

$$|f(u,\nabla u)| \le \Lambda |\nabla u|^n,\tag{2}$$

for some constant $\Lambda > 0$ that may depend on u.

A well-known example of (1) is the *n*-harmonic map equation. Let $(N, h) \hookrightarrow \mathbb{R}^k$ be a \mathbb{C}^{∞} compact Riemannian submanifold. An *n*-harmonic map $u : \Omega \to N$ is a critical point of the *n*-energy $\int_{\Omega} |\nabla u|^n dx$ in the space of functions $u \in W^{1,n}(\Omega, \mathbb{R}^k)$ with $u(x) \in N$ for a.e. $x \in \Omega$. The equation for n-harmonic maps is

$$\operatorname{div}(|\nabla u|^{n-2}\nabla u) = |\nabla u|^{n-2}Q(u, \nabla u), \tag{3}$$

where $Q(u, \cdot)$ is the trace of the second fundamental form of N at $u(x) \in N$; $Q(u, \nabla u)$ is quadratic in ∇u .

There is a vast literature on the regularity and partial regularity of solutions to harmonic (or *p*-harmonic) map type equations; see [4][11][13][15][17][19][20][24][26][30] and other references therein.

Our interest in this paper is mainly on the H-systems in higher dimensions. Suppose $u \in W^{1,n}(\Omega, \mathbb{R}^{n+1})$, $u = (u^1, \dots, u^{n+1})$. Then the cone generated by the image $u(\Omega)$, with vertex being the origin of \mathbb{R}^{n+1} , has a welldefined volume

$$V(u) = \frac{1}{n+1} \int_{\Omega} u \cdot u_1 \wedge \dots \wedge u_n;$$

see [24]. Here $u_1 \wedge \cdots \wedge u_n$ is the cross product of the partial derivatives u_1, \ldots, u_n , which can be described as follows. For any vector $v \in \mathbb{R}^{n+1}$,

$$v \cdot u_1 \wedge \dots \wedge u_n = \begin{vmatrix} v^1 & v^2 & \dots & v^{n+1} \\ u_1^1 & u_1^2 & \dots & u_1^{n+1} \\ \dots & \dots & \dots & \dots \\ u_n^1 & u_n^2 & \dots & u_n^{n+1} \end{vmatrix}.$$

Consider the minimization problem

$$\min \int_{\Omega} |\nabla u|^n, \ u = \eta \text{ on } \partial\Omega, \ V \ (u) = c, \tag{4}$$

for a given $\eta \in W^{1,n}(\Omega, \mathbb{R}^{n+1})$ and a constant c. A critical point of (4) is called an *n*-harmonic map with prescribed volume; it satisfies

div
$$(|\nabla u|^{n-2}\nabla u) = Hu_1 \wedge \dots \wedge u_n, \ u = \eta \text{ on } \partial\Omega,$$
 (5)

where H is the Lagrange multiplier.

When n = 2, (5) becomes

$$\Delta u = H u_1 \wedge u_2. \tag{6}$$

A conformal solution of (6) represents a surface of constant mean curvature; see, e.g., [28] [31]. The existence of solutions and multiple solutions of (6) were established in many works, including [6] [21] [27] [29] [31] [33]. In Theorems 5 and 12 below, we prove for relatively small H and boundary data, there is a solution of least energy-the *small solution*, and there is a

large solution, with the same boundary data. This generalizes the early work of Hildebrandt [21], Brezis and Coron [6] and Struwe [29] for n = 2.

For the regularity of (2-)harmonic maps u on a domain $\Omega \subset \mathbb{R}^2$ (or a smooth surface), Heléin [19] proved their C^{∞} regularity. Assuming u is conformal, or stationary or energy minimizing, Morrey [23], Grüter [16] and Schoen [25] established the regularity of u earlier. For the H-system (6) with constant H, Wente [31] showed that any solution of (6) is analytic. Grüter [16] proved the $C^{1,\alpha}$ regularity $(0 < \alpha < 1)$ of conformal solutions to (6), where H may depend on u; same result was obtained later by Bethuel [5] assuming that |DH(u)| is bounded. Wente's result was generalized to (5) in [10][24], which implies that all solutions of (5) are $C^{1,\alpha}$ regular. In this paper, we prove the $C^{1,\alpha}$ regularity of conformal solutions to (1), which generalizes the work of Grüter [16]. In particular, conformal n-harmonic maps from $\Omega \subset \mathbb{R}^n$ (or an n-manifold) are $C^{1,\alpha}$, and conformal solutions of (5) with bounded H = H(u) are also $C^{1,\alpha}$. Unlike in two dimension, one cannot reparametrize a solution to obtain conformality; so the conformality condition for solutions to (1) is fairly strong. It is conjectured that all nharmonic maps and solutions to (5) with bounded H = H(u) are $C^{1,\alpha}$. Generally speaking, $C^{1,\alpha}$ regularity is optimal for solutions of (1)as shown by examples in [22].

2 Existence of Solutions to H-systems

For any $u \in W^{1,n}(\Omega, \mathbb{R}^{n+1})$, the image $u(\Omega)$ is a generalized "hypersurface" with area

$$A(u) = \int_{\Omega} J(u) dx, \ J(u) = |u_1 \wedge \dots \wedge u_n|,$$

where J(u) is the Jacobian of u. Note that

$$|v \cdot u_1 \wedge \dots \wedge u_n| \leq |v||u_1| \cdots |u_n|$$

$$\leq |v| \left(\frac{|u_1|^2 + \dots + |u_n|^2}{n}\right)^{n/2}$$

$$= |v| \frac{|\nabla u|^n}{\sqrt{n^n}},$$
(7)

and the equalities hold if and only if u is conformal. Here we say that a function $u \in W^{1,n}(\Omega, \mathbb{R}^k)$ is *conformal* if for some function $\lambda(x)$ and all i, j = 1, ..., n,

$$u_i \cdot u_j = \lambda(x)\delta_{ij} . \tag{8}$$

It follows from (7)

$$|u_1 \wedge \dots \wedge u_n| \le \frac{|\nabla u|^n}{\sqrt{n^n}} \text{ and } A(u) \le \frac{1}{\sqrt{n^n}} \int_{\Omega} |\nabla u|^n,$$
 (9)

and each of the equalities holds iff u is conformal.

We now discuss some properties of the volume functional V.

First note that if $u = (u^1, ..., u^{n+1})$ and $u^1 = 0$ on $\partial\Omega$, then for all i = 1, ..., n,

$$\int_{\Omega} u^{1} \frac{\partial \left(u^{2}, ..., u^{n+1}\right)}{\partial \left(x^{1}, ..., x^{n}\right)} = (-1)^{i-1} \int_{\Omega} u^{i} \frac{\partial \left(u^{1}, ..., u^{n}\right)}{\partial \left(x^{1}, ..., x^{n}\right)},$$
(10)

and the volume V can be written as

$$V(u) = \int_{\Omega} u^1 \frac{\partial (u^2, ..., u^{n+1})}{\partial (x^1, ..., x^n)}.$$
 (11)

In fact, (10) follows by expanding the determinant $\frac{\partial(u^2,...,u^{n+1})}{\partial(x^1,...,x^n)}$ in the *i*-th column, using integration by parts together with the fact

$$\sum_{\alpha=1}^{n} \frac{\partial}{\partial x^{\alpha}} \frac{\partial (u^2, \dots, \overset{\wedge}{u^i}, \dots, u^{n+1})}{\partial (x^1, \dots, x^{\alpha}, \dots, x^n)} = 0.$$

Expanding V(u) in terms of $u^1, ..., u^{n+1}$ we get (11) by using (10).

As a consequence of (10) and isoperimetric inequality, we have

Proposition 1 If $u = (u^1, ..., u^{n+1}) \in W^{1,n}(\Omega, R^{1+n})$ and $u^1 = 0$ on $\partial\Omega$, then for some constant C_1 ,

$$\left| \int u^1 \frac{\partial \left(u^2, \dots, u^{n+1} \right)}{\partial \left(x^1, \dots, x^n \right)} \right| \le C_1 \left\| \nabla u^1 \right\|_{L^n(\Omega)} \cdots \left\| \nabla u^{n+1} \right\|_{L(\Omega)}$$
(12)

Proof: We may assume that none of u^i is constant (otherwise, the inequality is trivial), and that $\|\nabla u^i\|_{L^n(\Omega)} = 1$ for all i (by the homogeneity of (12) in u^i). Then (9) implies

$$A(u) \le \frac{1}{\sqrt{n^n}} \int_{\Omega} |\nabla u|^n = \left(\frac{n+1}{n}\right)^{n/2}$$

Denote $v = (0, u^2, ..., u^{n+1})$. Then $A(v) \leq A(u)$ and V(v) = 0. So

$$\left| \int_{\Omega} u^1 \frac{\partial \left(u^2, \dots, u^{n+1} \right)}{\partial \left(x^1, \dots, x^n \right)} \right| = |V(u) - V(v)|$$

is the volume enclosed by the graphs of u and v, whose area is A(u) + A(v). By isoperimetric inequality (see [2], for example),

$$|V(u) - V(v)| \le \frac{1}{C} [A(u) + A(v)]^{(n+1)/n},$$

where $C = (n+1)\omega_n^{\frac{1}{n}}$ and ω_n is the area of the unit *n*-sphere S^n . Therefore, for an absolute constant C_1 ,

$$\left| \int_{\Omega} u^1 \frac{\partial \left(u^2, \dots, u^{n+1} \right)}{\partial \left(x^1, \dots, x^n \right)} \right| \leq C_1,$$

which shows (12). \Box

(12) implies the following corollaries.

Corollary 2 If $u \in W^{1,n}(\Omega, \mathbb{R}^{n+1})$ and $u^i | \partial \Omega = 0$ for some i = 1, ..., n + 1, then the functional V is continuous at u in the norm of $W^{1,n}(\Omega, \mathbb{R}^{n+1})$.

Corollary 3 Suppose $u, v \in W^{1,n}(\Omega, \mathbb{R}^{n+1})$ and v = 0 or u = 0 on $\partial\Omega$, then for some constant C,

$$\left| \int_{\Omega} v \cdot u_1 \wedge \dots \wedge u_n \right| \le C \left\| \nabla v \right\|_{L^n(\Omega)} \left\| \nabla u \right\|_{L(\Omega)}^n.$$
(13)

Proof: Expand $|\int_{\Omega} v \cdot u_1 \wedge \cdots \wedge u_n|$ in terms of $v^1, ..., v^{n+1}$ and apply (12) to each term. \Box

We now derive a useful property of

$$R(v,u) = \int_{\Omega} v \cdot u_1 \wedge \ldots \wedge u_n.$$

Suppose $u, v, w \in W^{1,n}(\Omega, \mathbb{R}^{n+1})$, w = 0 or v = 0 on $\partial\Omega$, and $u_t = u + tw$ for $0 \le t \le 1$. For a moment, suppose that $u, v, w \in \mathbb{C}^2$. Then

$$R(v, u + w) - R(v, u) = \int_{\Omega} v \cdot (u_t)_1 \wedge \dots \wedge (u_t)_n |_0^1$$

$$= \int_{\Omega} \sum_{i=0}^n v \cdot (u_t)_1 \wedge \dots \wedge w_i \wedge \dots \wedge (u_t)_n$$

$$= -\int_{\Omega} \int_0^1 \sum_{i=0}^n w_i \cdot (u_t)_1 \wedge \dots \wedge v_i \wedge \dots \wedge (u_t)_n$$

$$= \int_{\Omega} \int_0^1 \sum_{i=0}^n w \cdot (u_t)_1 \wedge \dots \wedge (u_t)_{ji} \dots \wedge v_i \wedge \dots \wedge (u_t)_n$$

$$= \int_{\Omega} \int_0^1 \sum_{i=0}^n w \cdot (u_t)_1 \wedge \dots \wedge (u_t)_{ji} \dots \wedge v_i \wedge \dots \wedge (u_t)_n$$

$$= \int_{\Omega} \int_0^1 \sum_{i=0}^n w \cdot (u_t)_1 \wedge \dots \wedge v_i \wedge \dots \wedge (u_t)_n.$$

(14)

Here we used the skew-symmetry of the cross product, which implies the term $\sum_{j \neq i} \sum_{i=0}^{n} \cdots = 0$. It follows

$$|R(v, u+w) - R(v, u)| \le C ||w||_{\infty} ||\nabla v||_{L^n} |||\nabla u| + |\nabla w|||_{L^n}^{n-1};$$
(15)

or

$$|R(v, u+w) - R(v, u)| \le C ||\nabla v||_{\infty} ||w||_{L^{n}} |||\nabla u| + |\nabla w|||_{L^{n}}^{n-1}.$$
 (16)

The estimates (15) and (16) show that, in addition to the condition that $u, v, w \in W^{1,p}(\Omega, \mathbb{R}^{n+1})$, it is enough to assume $w \in C^0$ for (15) to hold, and $v \in W^{1,\infty}(\Omega, \mathbb{R}^{n+1})$ for (16).

Applying (14) to u = 0 and $v, w \in W^{1,n}(\Omega, \mathbb{R}^{n+1})$ with v or w = 0 on $\partial\Omega$, we obtain

$$\int_{\Omega} v \cdot w_1 \wedge \dots \wedge w_n = \int_{\Omega} \int_0^1 t^{n-1} dt \sum_{i=0}^n w \cdot w_1 \wedge \dots \wedge w_i \wedge \dots \wedge w_n$$
$$= -\frac{1}{n} \sum_{i=1}^n \int_{\Omega} v_i \cdot w_1 \wedge \dots \wedge w_i \wedge \dots \wedge w_n.$$
(17)

The equation (5) can be derived by using (17). We only need to calculate $\frac{d}{dt}V(u+t\phi)$ for any $\phi \in W_0^{1,n}(\Omega, \mathbb{R}^{n+1})$. By (17)

$$\frac{d}{dt}V(u+t\phi) = \frac{1}{n+1}\int_{\Omega}\phi \cdot u_{1}\wedge\cdots\wedge u_{n} + \frac{1}{n+1}\sum_{i=1}^{n}\int_{\Omega}u \cdot u_{1}\wedge\cdots\wedge \phi_{i}\wedge\cdots\wedge u_{n} \\
= \frac{1}{n+1}\int_{\Omega}\phi \cdot u_{1}\wedge\cdots\wedge u_{n} - \frac{1}{n+1}\sum_{i=1}^{n}\int_{\Omega}\phi_{i}\cdot u_{1}\wedge\cdots\wedge u_{i}\wedge\cdots\wedge u_{n} \\
= \int_{\Omega}\phi \cdot u_{1}\wedge\cdots\wedge u_{n}.$$

The following is another property of R that we prove by (17).

Theorem 4 Suppose that, as $m \to \infty$, $u^m \rightharpoonup u$ in $W_0^{1,n}(\Omega, \mathbb{R}^{n+1})$, and either $v^m \to v$ in $W^{1,n}(\Omega, \mathbb{R}^{n+1})$ or $||v^m - v||_{\infty} \to 0$ with v being continuous, then

$$R(v^m, u^m) \equiv \int v^m \cdot u_1^m \wedge \dots \wedge u_n^m \to R(v, u), \text{ as } m \to \infty.$$

Proof: By (13) and the assumptions, we have

$$|R(v^{m}, u^{m}) - R(v, u^{m})| \le \left\{ \begin{array}{c} \|\nabla v^{m} - \nabla v\|_{L^{n}(\Omega)} \\ \text{or} \|v^{m} - v\|_{\infty} \end{array} \right\} \|\nabla u^{m}\|_{L^{n}(\Omega)}^{n} \to 0$$

as $m \to \infty$. This implies that we may assume $v^m \equiv v$. Furthermore, we may assume that v is C^2 by approximating v by smooth functions in the norm of $W^{1,n}$, and in the norm of C^0 in case v is continuous. Now, because $u^m \rightharpoonup u$ in $W^{1,n}_0(\Omega, \mathbb{R}^{n+1})$, we have $u^m \rightarrow u$ in L^n . By (17),

$$R(v, u^{m}) = -\frac{1}{n} \sum_{i=1}^{n} \int_{\Omega} v_{i} \cdot (u^{m})_{1} \wedge \dots \wedge u_{i}^{m} \wedge \dots \wedge (u^{m})_{n}$$

$$\rightarrow -\frac{1}{n} \sum_{i=1}^{n} \int_{\Omega} v_{i} \cdot u_{1} \wedge \dots \wedge u_{i} \wedge \dots \wedge u_{n}, \text{ as } m \rightarrow \infty$$

$$= \int_{\Omega} v \cdot u_{1} \wedge \dots \wedge u_{i} \wedge \dots \wedge u_{n} = R(v, u).$$

We now prove the existence of the small solutions.

Theorem 5 Suppose $\eta \in W^{1,n}(\Omega, \mathbb{R}^{n+1})$ and $0 \neq H$ is a constant satisfying

$$||\eta||_{\infty} |H| \le \sqrt{n^n}.$$
(18)

Then the problem (5) has a solution u that satisfies $||u||_{\infty} \leq ||\eta||_{\infty}$.

Remark 6 The case n = 2 of this theorem is due to Hildebrandt [21]; see also [20][27][31][32][10]. In the next section, we will show that if η and H are small enough, then the problem (5) has another "big" solution.

Remark 7 In general, a bound condition for H like (18) is needed for the existence of a solution. Consider the case when Ω is the unit ball and $\eta(x) = (x, 0)$ for $x \in \partial \Omega$. If H satisfies (18), then a conformal representation of a sphere cap of radius $r = \sqrt{n^n} / |H| \ge 1$ with $u |\partial \Omega = \eta$ is a solution to (4). If $|H| > \sqrt{n^n}$, it can be shown that (4) has no solution.

Proof of Theorem5: Note that the equation in (5) is the Euler-Lagrange equation of the functional I, defined by

$$I(u) = \int_{\Omega} |\nabla u|^n + \frac{nH}{n+1} u \cdot u_1 \wedge \dots \wedge u_n, \qquad (19)$$

without constraint. Since I is neither bounded from above, nor from below, it has no global maximum nor minimum. We will find a local minimum of I by minimizing I on the subset

$$M = \left\{ u \in W^{1,n}\left(\Omega, R^{n+1}\right) : u = \eta \text{ on } \partial\Omega, \ ||u||_{\infty} |H| \le \sqrt{n^n} \frac{2n+1}{2n} \right\}.$$

It is easy to see that M is weakly closed and convex subset of $W^{1,n}(\Omega, \mathbb{R}^{n+1})$. For any $u \in M$, it follows from (9) that

$$I(u) \ge \int_{\Omega} |\nabla u|^n - \frac{n |H| ||u||_{\infty}}{(n+1)\sqrt{n^n}} \int_{\Omega} |\nabla u|^n \ge \frac{1}{2n+2} \int_{\Omega} |\nabla u|^n,$$
(20)

So I is coercive. From [23] or [8], I is quasiconvex. By the Theorem II.4 in [1], I is weakly lower semicontinuous. It follows from the direct method that I has a minimum u in M.

We now show that $||u||_{\infty} \leq ||\eta||_{\infty}$. Suppose k is any number satisfying

$$||\eta||_{\infty} |H| < k |H| \le \sqrt{n^n} \frac{2n+1}{2n}.$$
 (21)

Let $\phi = \max\{|u| - k, 0\}$. Then $\phi \in W_0^{1,n}(\Omega, \mathbb{R}^+) \cap L^{\infty}$, and $u - t\phi u \in M$ for sufficiently small $t \ge 0$. It follows from the minimality of u,

$$0 \geq -\frac{d}{dt}|_{t=0}I(u-t\phi u) = \int_{\Omega} \langle \phi u, DI(u) \rangle$$

= $n\int_{\Omega} |\nabla u|^{n-2}\nabla u\nabla (\phi u) + \frac{|H|}{n+1}(\phi u) \cdot u_1 \wedge \dots \wedge u_n$
$$\geq n\int_{\Omega} \left(|\nabla u|^n - \frac{|H|||u||_{\infty}}{n+1}|u_1 \wedge \dots \wedge u_n| \right) \phi + n\int_{\Omega} |\nabla u|^{n-2}\nabla u \cdot u\nabla \phi$$

$$\geq \frac{n}{2n+2}\int_{\{|u|>k\}} |\nabla u|^n \phi + n\int_{\{|u|>k\}} |\nabla u|^{n-2} (\nabla u \cdot u)^2 |u|^{-1}.$$

It follows that $\nabla u = 0$ a.e. on $\{|u| > k\}$, which implies that $\nabla \phi = 0$ a.e. Ω . So $\phi \equiv 0$, or $|u| \le k$. As k in (21) is arbitrary, $||u||_{\infty} \le ||\eta||_{\infty}$, which implies that $||u||_{\infty} |H| \le ||u||_{\infty} |H| < \sqrt{n^n \frac{2n+1}{2n}}$. So u is an interior minimum point of M in the norm $||\cdot||_{\infty}$; it is then has to be a critical point of I and satisfies (5). \Box

3 The Existence of Large Solutions

In Section 2, we showed that if $||\eta||_{\infty} |H| \leq \sqrt{n^n}$, then the Dirichlet problem (22) has a solution. In this section, we will prove that there is at least another *big* solution if η is small enough. When n = 2, the existence of multiple solutions of (22) was established in [6][29] under the optimal assumption $0 \neq ||\eta||_{\infty} |H| < 2$. The optimal condition for our case is expected to be $0 \neq ||\eta||_{\infty} |H| < \sqrt{n^n}$, though our proof of Theorem (12) does not yield such an estimate.

Denote by u_0 the solution we found in Theorem 5 of Section 3. We will solve the problem

$$\operatorname{div}\left(|\nabla u|^{n-2}\nabla u\right) = Hu_1 \wedge \dots \wedge u_n, \ u = \eta \text{ on } \partial\Omega,$$
(22)

for $u = u_0 + v$ with some $v \in W_0^{1,n}(\Omega, \mathbb{R}^{n+1}), v \neq 0$. Note that (22) is the Euler-Lagrange equation of the functional

$$E(u) = \int_{\Omega} |\nabla u|^n + \frac{nH}{n+1}Q(u), \qquad (23)$$

without constraint, where $Q(u) = \int_{\Omega} u \cdot u_1 \wedge \cdots \wedge u_n = (n+1)V(u)$. The method is to find a critical point of (23). We need some preparations.

Proposition 8 For $a, b \in \mathbb{R}^k$, $(k \ge 2 \text{ an integer})$, there holds

$$|a+b|^{n} = |a|^{n} + |b|^{n} + n |a|^{n-2} a \cdot b + M(a,b)$$
(24)

where M(a, b) satisfies

$$|M(a,b)| \le n(n-2) \left(|a|+|b|\right)^{n-3} |a| |b|^2.$$
(25)

Proof: By the fundamental theorem of calculus,

$$M(a,b) \equiv |a+b|^{n} - \left(|a|^{n} + |b|^{n} + n |a|^{n-2} a \cdot b\right)$$

$$= \int_{0}^{1} \frac{d}{dt} |a+tb|^{n} dt - \left(|b|^{n} + n |a|^{n-2} a \cdot b\right)$$

$$= n \int_{0}^{1} |a+tb|^{n-2} \left(a \cdot b + t |b|^{2}\right) dt - \left(|b|^{n} + n |a|^{n-2} a \cdot b\right)$$

$$= n \int_{0}^{1} \int_{0}^{t} \frac{d}{ds} |a+sb|^{n-2} a \cdot b \, ds \, dt + n \int_{0}^{1} \int_{0}^{1} t \frac{d}{ds} |sa+tb|^{n-2} |b|^{2} \, ds \, dt$$
(26)

(25) follows from the following estimate: For any $p \ge 1$,

$$\sup_{0 \le t \le 1} \left| \frac{d}{dt} \left| a + tb \right|^p \right| \le p \left(|a| + |b| \right)^{p-1} |b|.$$
(27)

Proposition 9

$$Q(u_0 + v) = Q(u_0) + Q(v) + \sum_{i=1}^{n-1} Q_i(v)$$
(28)

where $Q_i(v)$ is homogeneous in v of degree i and homogeneous in u_0 of degree n+1-i.

Proof: Let $g(t) = Q(u_0 + tv)$. Then (28) is the Taylor expansion of g at t = 1, where $Q_i(v) = g^{(i)}(0)/i!$ and $Q(v) = Q_{n+1}(v)$. \Box

Proposition 10

$$n \int_{\Omega} |\nabla u_0|^{n-2} \nabla u_0 \nabla v + \frac{nH}{n+1} Q_1(v) = 0.$$
 (29)

Proof: The is just the weak form of the equation (22); v serves as a test function. \Box

It follows from (23)-(29) that

$$E(u_{0}+v) = \int_{\Omega} |\nabla u_{0}|^{n} + \frac{nH}{n+1}Q(u_{0}) + \int_{\Omega} |\nabla v|^{n} + \frac{nH}{n+1}Q_{n}(v) + E_{2}(v) + \frac{nH}{n+1}Q(v),$$
(30)

where

$$Q_n(v) = (n+1) \int_{\Omega} u_0 \cdot v_1 \wedge \dots \wedge v_n, \text{ by } (17),$$
$$E_2(v) = \int_{\Omega} M(\nabla u_0, \nabla v) + \sum_{i=2}^{n-1} Q_i(v).$$
(31)

Since the first two terms of (30) are constant, we are led to the functional

$$\Phi(v) \equiv \int_{\Omega} |\nabla v|^n + \frac{nH}{n+1} Q_n(v) + E_2(v) + \frac{nH}{n+1} Q(v).$$
(32)

We look at each term in (32). Note that by (9),

$$|Q_n(v)| \le C \sup |u_0| \int_{\Omega} |\nabla v|^n, \text{ where } C = \frac{n+1}{\sqrt{n^n}}.$$
(33)

The isoperimetric inequality for mappings [2][Theorem 12] implies that if $v \in W_0^{1.n}(\Omega, \mathbb{R}^{n+1})$ then

$$|V(v)| \le \frac{1}{C} A(v)^{\frac{n+1}{n}},$$
(34)

where $C = (n+1)\omega_n^{\frac{1}{n}}$ and ω_n is the area of the unit *n*-sphere S^n . In terms of Q(v) = (n+1)V(v) and $\int_{\Omega} |\nabla v|^n$, it follows from (17) that

$$|Q(v)|^{\frac{n}{n+1}} \le \frac{1}{S} \int_{\Omega} |\nabla v|^n$$
, where $S = n^{\frac{n}{2}} \omega_n^{\frac{1}{n+1}}$. (35)

To estimate $E_2(v)$, we first notice that Q(u) = R(u, u) and

$$\sum_{i=2}^{n-1} Q_i(v) = Q(u_0 + v) - Q(u_0) - Q_1(v) - Q_n(v) - Q(v)$$

= $[R(u_0, u_0 + v) - R(u_0, u_0) - R(u_0, v)] +$
 $[R(v, u_0 + v) - R(v, v) - nR(u_0, v)] - (n+1)R(v, u_0)$ (36)

By (14), we have

$$\begin{aligned} &|R(v, v + u_0) - R(v, v) - nR(u_0, v)| \\ &= \left| \int_{\Omega} \int_0^1 \left[\int_0^t \frac{d}{ds} \sum_{i=0}^n u_0 \cdot (v + su_0)_1 \wedge \dots \wedge v_i \wedge \dots \wedge (v + su_0)_n \, ds \right] dt \right| \\ &\leq C \, ||u_0||_{\infty} \, ||\nabla u_0||_{L^n} \, ||\nabla v||_{L^n} \, |||\nabla v| + |\nabla u_0|||_{L^n}^{n-2} \,. \end{aligned}$$

$$(37)$$

$$\begin{aligned} &|R(u_{0}, u_{0} + v) - R(u_{0}, u_{0}) - R(u_{0}, v)| \\ &= \left| \int_{\Omega} \int_{0}^{1} \sum_{i=0}^{n} u_{0} \cdot (su_{0} + tv)_{1} \wedge \dots \wedge v_{i} \wedge \dots \wedge (su_{0} + tv)_{n} \left|_{s=0}^{s=1} dt \right| \\ &= \left| \int_{\Omega} \int_{0}^{1} \int_{0}^{1} \frac{d}{ds} \sum_{i=0}^{n} u_{0} \cdot (su_{0} + tv)_{1} \wedge \dots \wedge v_{i} \wedge \dots \wedge (su_{0} + tv)_{n} \, ds dt \right| \\ &\leq C \left| |u_{0}| \right|_{\infty} \left| |\nabla u_{0}| \right|_{L^{n}} \left| |\nabla v| \right|_{L^{n}} \left| ||\nabla v| + |\nabla u_{0}| \right| \right|_{L^{n}}^{n-2}. \end{aligned}$$

$$(38)$$

$$|R(v, u_0)| \le C \, ||\nabla v||_{L^n} \, ||\nabla u_0||_{L^n}^n \,. \tag{39}$$

By
$$(31)$$
, (25) and (36) - (39) , we get

$$|E_{2}(v)| \leq \int_{\Omega} n(n-2) \left(|\nabla u_{0}| + |\nabla v| \right)^{n-3} |\nabla u_{0}| |\nabla v|^{2} + \left| \sum_{i=2}^{n-1} Q_{i}(v) \right|$$

$$\leq C \int_{\Omega} \left(|\nabla u_{0}|^{n-2} |\nabla v|^{2} + |\nabla u_{0}|^{2} |\nabla v|^{n-2} \right) + C \int_{\Omega} \sum_{i=2}^{n-1} |u_{0}|_{\infty} |\nabla u_{0}| |\nabla v| \left(|\nabla v|^{n-2} + |\nabla u_{0}|^{n-2} \right) + C |\nabla v| |\nabla u_{0}|^{n}$$

$$\leq C_{0} \int_{\Omega} \sum_{i=1}^{n-1} |\nabla u_{0}|^{n-i} |\nabla v|^{i} + C |\nabla v| |\nabla u_{0}|^{n}.$$

$$(40)$$

Note that Φ is unbounded from above and below, and it is a typical case not satisfying the Palais-Smale conditions. The standard variational method fails to give the existence of a critical point. In the case n = 2, where E_2 does not appear in Φ , Brezis and Coron [6] was able to find a nontrivial critical point of Φ as a proper dilation of a minimum of $\int_{\Omega} |\nabla v|^2 + \frac{2H}{3}Q_2(v)$ subject to Q(v) = constant. For $n \geq 3$, the terms of Φ have at least three different homogeneities, therefore, the method in [6] is unlikely to work. Our method is to apply a mountain pass theorem of Ambrosetti-Rabinowitz [3] in a min-max scheme. We will use the following form of the theorem in [3], as used by Brezis and Nirenberg[7] in solving elliptic equations with critical exponents.

Theorem 11 [3][7]Assumption: Let Φ be a C^1 function on a Banach space E. Suppose there exists a neighborhood U of 0 in E and a constant ρ such that $\Phi(u) \ge \rho$ for every $u \in \partial U$, and

$$\Phi(0) < \rho \text{ and } \Phi(v) < \rho \text{ for some } v \notin U.$$

Set $c = \inf_{p \in P} \max_{w \in p} \Phi(w) \ge \rho$, where P denotes the class of paths joining 0 to v.

Conclusion: There is a sequence $\{u_i\}$ in E such that $\Phi(u_i) \to c$ and

$$\Phi'(u_i) \to 0 \text{ in } E^*.$$

The advantage of this theorem is that it does not require (PS)-condition. We will show that a subsequence of $\{u_i\}$ converges to a nontrivial critical point of Φ . Our result is stated as follows.

Theorem 12 $\eta \in W^{1,n}(\Omega, \mathbb{R}^{n+1})$ and $||\eta||_{\infty} + ||\nabla \eta||_{L^n(\partial\Omega)}$ is small enough, then the problem (22) has at least two solutions.

Remark 13 One solution is the small solution u_0 found in Section 2; it satisfies $||u_0||_{\infty} \leq ||\eta||_{\infty}$ and is a minimum of E in M. Thus

$$\frac{1}{2n+2} \int_{\Omega} |\nabla u_0|^n \le E(u_0) \le E(\bar{\eta}),$$

where $\bar{\eta}(x) = |x| \eta\left(\frac{x}{|x|}\right)$ is a special extension of η . Thus

$$\int_{\Omega} \left| \nabla u_0 \right|^n \le \int_{\Omega} \left| \nabla \bar{\eta} \right|^n + 2n HQ(\bar{\eta}) \le C_0 \int_{\Omega} \left| \nabla \bar{\eta} \right|^n \le C_1 \left(\left| \left| \eta \right| \right|_{\infty} + \left| \left| \nabla \eta \right| \right|_{L^n(\partial\Omega)} \right).$$

It follows that $||\eta||_{\infty} + ||\nabla \eta||_{L^{n}(\partial\Omega)}$ is small implies that $||u_{0}||_{\infty} + ||\nabla u_{0}||_{L^{n}(\Omega)}$ is also small. The smallness condition used in the proof actually is referred to u_{0} .

We now start the proof of Theorem 12 with verifying the conditions in Theorem 11.

Proposition 14 There are numbers $\delta, \rho > 0$ such that

$$\Phi(v) \ge \rho \text{ for } v \in W_0^{1,n}(\Omega, \mathbb{R}^{n+1}) \text{ with } ||\nabla v||_{L^n(\Omega)} = \delta.$$

Proof: By (32), (33), (35), (40) and the Hölder inequality, for any $\epsilon > 0$, there are numbers $C_0, C(\epsilon)$, such that

$$\Phi(v) \ge \int_{\Omega} |\nabla v|^n - C_0||u_0||_{\infty} \int_{\Omega} |\nabla v|^n - \epsilon \int_{\Omega} |\nabla v|^n - C_0(\epsilon) \left(|u_0|_{\infty} + ||\nabla u_0||_{L^n(\Omega)} \right) - C_0 \left(\int_{\Omega} |\nabla v|^n \right)^{\frac{n+1}{n}}$$

Fix $\epsilon = \frac{1}{4}$ and a number $\delta > 0$ such that $C_0 \delta \leq \frac{1}{8}$. Suppose u_0 satisfies $C_0||u_0||_{\infty} \leq \frac{1}{4}$ and $C(\frac{1}{4})\left(|u_0|_{\infty} + ||\nabla u_0||_{L^n(\Omega)}\right) \leq \frac{1}{16}\delta^n$. Then for any $v \in W_0^{1,n}(\Omega, \mathbb{R}^{n+1})$ with $||\nabla v||_{L^n(\Omega)} = \delta$, we have

$$\Phi(v) \ge \frac{1}{4} \int_{\Omega} |\nabla v|^n - C_0 \left(\int_{\Omega} |\nabla v|^n \right)^{\frac{n+1}{n}} - C(\epsilon) \left(|u_0|_{\infty} + ||\nabla u_0||_{L^n(\Omega)} \right)$$

$$\ge \frac{1}{8} \delta^n - C(\epsilon) \left(|u_0|_{\infty} + ||\nabla u_0||_{L^n(\Omega)} \right) \ge \frac{1}{16} \delta^n.$$

The proposition holds with $\rho = \frac{1}{16} \delta^n$. \Box

Proposition 15 There is a $v \in W_0^{1,n}(\Omega, \mathbb{R}^{n+1})$ such that

$$\Phi(v) \le 0, \sup_{0 \le t} \Phi(tv) < \frac{S^{n+1}}{|H|^n (n+1)}.$$
(41)

The proof of Proposition 15 will be given later. Now we prove Theorem 12.

Proof of Theorem 12: By the theorem of Ambrosetti-Rabinowitz above and Propositions 14 and 15, there exists $\{v^i\} \subset W_0^{1,n}(\Omega, \mathbb{R}^{n+1})$ such that as $i \to \infty$,

$$\Phi(v^{i}) = \int_{\Omega} \left| \nabla v^{i} \right|^{n} + \frac{nH}{n+1} Q_{n} \left(v^{i} \right) + E_{2}(v^{i}) + \frac{nH}{n+1} Q(v^{i}) \rightarrow c, \qquad (42)$$

where

$$c = \inf_{P} \max_{v \in P} \left\{ \Phi(v) \right\},\tag{43}$$

and

$$\frac{1}{n}\Phi'(v^{i}) = -\operatorname{div}(|\nabla v^{i}|^{n-2}\nabla v^{i}) + \frac{H}{n+1}Q'_{n}(v^{i}) + \frac{1}{n}E'_{2}(v^{i}) + Hv_{1}^{i}\wedge\cdots\wedge v_{n}^{i}\to 0 \text{ in } W^{-1,n'},$$
(44)

where $n' = \frac{n}{n-1}$. Multiply (44) by v^i and integrate. We get

$$\int_{\Omega} \left| \nabla v^{i} \right|^{n} + \frac{H}{n+1} < Q'_{n} \left(v^{i} \right), v^{i} > + \frac{1}{n} < E'_{2}(v^{i}), v^{i} > + HQ(v^{i}) \to 0.$$
(45)

We claim that

$$\int_{\Omega} \left| \nabla v^{i} \right|^{n} \le C \tag{46}$$

for some constant C. To prove (46), we first note that since $Q_n(v^i)$ is homogeneous in v^i of degree n,

$$\left| \langle Q_n'\left(v^i\right), v^i \rangle \right| = \left| nQ_n\left(v^i\right) \right| \le \frac{n(n+1)}{\sqrt{n^n}} \left| \left| u_0 \right| \right|_{\infty} \int_{\Omega} \left| \nabla v^i \right|^n; \quad (47)$$

and by (40) and the Hölder inequality, for $\epsilon > 0$, there is a constant $C(\epsilon)$, such that

$$\left| E_2(v^i) \right| \le C\left(\epsilon\right) \int_{\Omega} \left| \nabla u_0 \right|^n + \epsilon \int_{\Omega} \left| \nabla v^i \right|^n, \tag{48}$$

$$\left| \langle E_{2}^{\prime}(v^{i}), v^{i} \rangle \right| \leq C\left(\epsilon\right) \int_{\Omega} \left| \nabla u_{0} \right|^{n} + \epsilon \int_{\Omega} \left| \nabla v^{i} \right|^{n}.$$

$$(49)$$

Now look at the difference of (42) and (45), we then get

$$\frac{H}{n+1}Q_n(v^i) + \frac{H}{n+1}Q(v^i) + \frac{1}{n} < E'_2(v^i), v^i > -E_2(v^i) \to -c.$$

It follows for some constant C, depending on ϵ ,

$$\left|Q(v^{i})\right| \leq \epsilon \int_{\Omega} \left|\nabla v^{i}\right|^{n} + C(\epsilon).$$
(50)

Combining (50) with (42), we get (46). As in [18], we may assume, by passing to a subsequence, that v^i weakly converges to a v in $W^{1,n}(\Omega, \mathbb{R}^{n+1})$, and strongly converges to v in $W^{1,p}(\Omega, \mathbb{R}^{n+1})$ for any $p \in [1, n)$.

We claim that v is nontrivial. For otherwise, $v \equiv 0$ implies that

$$< Q'_{n}(v^{i}), v^{i} > = nQ_{n}(v^{i}) = (n+1) \int_{\Omega} u_{0} \cdot v_{1}^{i} \wedge \dots \wedge v_{n}^{i}, \to 0;$$

$$E_{2}(v^{i}) \to 0, < E'_{2}(v^{i}), v^{i} > \to 0.$$
(51)

By passing to a subsequence if necessary, we may assume further that $\int_{\Omega} |\nabla v^i|^n \to l$. It follows that $Q(v^i) \to -\frac{l}{H}$ by (45). By (42), we have

$$l + \frac{nH}{n+1} \left(-\frac{1}{H}\right) l \to c.$$
(52)

It follows that $c = \frac{l}{n+1}$. On the other hand, by isoperimetric inequality,

$$l \ge S \left| \frac{l}{H} \right|^{\frac{n}{n+1}},$$

which implies $l \ge \frac{S^{n+1}}{|H|^n}$. Therefore,

$$c \ge \frac{S^{n+1}}{\left|H\right|^n \left(n+1\right)}$$

This is a contradiction, because Proposition 15 implies that $c < \frac{S^{n+1}}{H^n(n+1)}$. So v is nontrivial. Taking the limit in (44), we have that v satisfies $\Phi'(v) = 0$, or equivalently, $u = u_0 + v$ is a solution. \Box The rest of this section is devoted to the proof of Proposition 15. The case n = 2 has been shown in [6]. We generalize the argument in [6] to higher dimensions.

For $v \in W_0^{1,n}(\Omega, \mathbb{R}^{n+1})$, denote

$$E_{3}(v) = \int_{\Omega} |\nabla v|^{n} + \frac{nH}{n+1}Q_{n}(v); \qquad (53)$$

$$R(v) = \frac{E_3(v)}{|Q(v)|^{\frac{n}{n+1}}};$$
(54)

$$S = \inf\left\{\frac{\int_{\Omega} |\nabla v|^n}{|Q(v)|^{\frac{n}{n+1}}}, \, Q(v) \neq 0, v \in W_0^{1,n}(\Omega, R^{n+1})\right\}.$$
 (55)

Define

$$J = \inf \left\{ T(v) : Q(v) \neq 0, v \in W_0^{1,n}(\Omega, R^{n+1}) \right\}.$$
 (56)

We first prove

Proposition 16 J < S.

Proof: Suppose $0 \in \Omega$ and $\nabla u(0) \neq 0$. Choose a coordinate basis $e_{1,\ldots,e_{n+1}}$ for \mathbb{R}^{n+1} that has the same orientation as the canonical basis of \mathbb{R}^{n+1} such that

$$\gamma \equiv \frac{\partial u}{\partial x_1}(0) \cdot e_1 + \dots + \frac{\partial u}{\partial x_n}(0) \cdot e_n < 0.$$
(57)

Let $v: \mathbb{R}^n \to S^n$ be the stereographic projection:

$$v(x) = \frac{(2x, -2)}{1 + |x|^2}, \ x \in \mathbb{R}^n,$$
(58)

(v is written in the coordinate $e_{1,...,e_{n+1}}$). For $\epsilon > 0$, consider the map

$$v^{\epsilon}(x) = \frac{(2x, -2\epsilon)}{\epsilon^2 + |x|^2}.$$

Let R > 0 be a number such that $B_{4R} \equiv B_{4R}(0) \subseteq \Omega$. Let $\xi \in C_0^1(B_{2R}, [0, 1])$ be a cut-off function such that $\xi = 1$ on B_R . Note that $\xi v^{\epsilon} \in C_0^1(\Omega, R^{n+1})$ and the following properties of v^{ϵ} can be easily verified:

$$v^{\epsilon}(x) = \frac{1}{\epsilon}v(\frac{x}{\epsilon}),$$

$$|v^{\epsilon}(x)| = \frac{2}{\sqrt{\epsilon^2 + |x|^2}},$$

$$|\nabla v^{\epsilon}(x)| \le \frac{C}{\epsilon^2 + |x|^2},$$
(59)

for a constant C independent of ϵ and x.

We shall establish

$$T(\xi v^{\epsilon}) = S + c_0 \epsilon + O\left(\epsilon^{1+\alpha}\right) \text{ as } \epsilon \to 0,$$
(60)

where $c_0 < 0$ and $\alpha \in (0, 1)$ are constants. Here, as a notation, O(f) denotes a quantity satisfying $|O(f)| \leq C |f|$ for some constant C. The inequality of the Proposition 16 follows by taking ϵ small enough.

We now proceed to show (60). By the mean value theorem,

$$|f(a+b) - f(a)| = O\left(\sup_{0 \le t \le 1} |f'(a+tb)|\right) |b|.$$
(61)

Applying this to $f(a) = |a|^n$ with $a = \xi \nabla v^{\epsilon}, b = \nabla \xi v^{\epsilon}$, we have

$$\int_{\Omega} |\nabla (\xi v^{\epsilon})| = \int_{R^{n}} |\xi \nabla v^{\epsilon} + \nabla \xi v^{\epsilon}|^{n}$$

=
$$\int_{R^{n}} |\xi \nabla v^{\epsilon}|^{n} + O\left(\int_{R^{n}} (|\xi \nabla v^{\epsilon}| + |\nabla \xi v^{\epsilon}|)^{n-1} |\nabla \xi v^{\epsilon}|\right).$$
(62)

Since v^{ϵ} is conformal and $v^{\epsilon}(\mathbb{R}^n)$ is a sphere of radius $\frac{1}{\epsilon}$, we have

$$\int_{\mathbb{R}^n} |\nabla v^{\epsilon}|^n = \sqrt{n^n} \cdot \operatorname{area}\left(v^{\epsilon}\left(\mathbb{R}^n\right)\right) = \frac{\sqrt{n^n}\omega_n}{\epsilon^n}.$$
(63)

On the other hand, by (59),

$$\int_{\mathbb{R}^n} \left(\xi^n - 1\right) \left|\nabla v^{\epsilon}\right|^n = O\left(\int_{|x| \ge R} \left|\nabla v^{\epsilon}\right|^n\right) = O\left(\int_{\mathbb{R}}^\infty \frac{r^{n-1}}{r^{2n}} dr\right) = O(1).$$
(64)

Similarly,

$$O\left(\int_{\mathbb{R}^n} \left(|\xi \nabla v^{\epsilon}|\right)^{n-1} |\nabla \xi v^{\epsilon}|\right) = O(1)$$

$$O\left(\int_{\mathbb{R}^n} |\nabla \xi v^{\epsilon}|^n\right) = O(1).$$
(65)

It follows from (62)-(65)

$$\int_{\Omega} |\nabla \left(\xi v^{\epsilon}\right)| = \frac{\sqrt{n^n}\omega_n}{\epsilon^n} + O(1).$$
(66)

We now estimate $Q(\xi v^{\epsilon})$. Applying (61) to $f(a) = v_1 \wedge \cdots \wedge v_n$ (where $a = (v_j^i)$) with $a = \xi \nabla v^{\epsilon}, b = \nabla \xi v^{\epsilon}$, we have

$$Q(\xi v^{\epsilon}) = \int_{\Omega} \xi v^{\epsilon} \cdot (\xi v^{\epsilon})_{1} \wedge \dots \wedge (\xi v^{\epsilon})_{n}$$

=
$$\int_{\Omega} \xi^{n+1} v^{\epsilon} \cdot v_{1}^{\epsilon} \wedge \dots \wedge v_{n}^{\epsilon} + O\left(\int_{R^{n}} |\xi v^{\epsilon}| \left(|\xi \nabla v^{\epsilon}| + |\nabla \xi v^{\epsilon}|\right)^{n-1} |\nabla \xi v^{\epsilon}|\right)$$

(67)

Recall that $Q(v^{\epsilon})/(n+1)$ is the oriented volume of $v^{\epsilon}(\mathbb{R}^n)$. So we have

$$Q(v^{\epsilon}) = \pm (n+1)\operatorname{vol}(v^{\epsilon}(R^n)) = \pm \frac{\omega_n}{\epsilon^{n+1}}.$$
(68)

Similarly to (64) and (65), we have

$$\int_{\Omega} \left(\xi^{n+1} - 1\right) v^{\epsilon} \cdot v_1^{\epsilon} \wedge \dots \wedge v_n^{\epsilon} = O(1).$$
(69)

$$O\left(\int_{\mathbb{R}^n} |\xi v^{\epsilon}| \left(|\xi \nabla v^{\epsilon}| + |\nabla \xi v^{\epsilon}|\right)^{n-1} |\nabla \xi v^{\epsilon}|\right) = O(1).$$
(70)

So (67) - (70) imply that

$$|Q(v^{\epsilon})| = \frac{\omega_n}{\epsilon^{n+1}} + O(1).$$
(71)

Similar argument applies to $Q(\xi v^{\epsilon})$, and we have

$$\frac{1}{n+1}Q_n(\xi v^{\epsilon}) = \int_{\Omega} u \cdot (\xi v^{\epsilon})_1 \wedge \dots \wedge (\xi v^{\epsilon})_n
= \int_{\Omega} \xi^n u \cdot v_1^{\epsilon} \wedge \dots \wedge v_n^{\epsilon} + O\left(\int_{R^n} |u| \left(|\xi \nabla v^{\epsilon}| + |\nabla \xi v^{\epsilon}|\right)^{n-1} |\nabla \xi v^{\epsilon}|\right)$$

$$= \int_{\Omega} \xi^n u \cdot v_1^{\epsilon} \wedge \dots \wedge v_n^{\epsilon} + O(1).$$
(72)

Denote $\tilde{u} = \xi^n u$. Since \tilde{u} is in $C_0^{1,\alpha}(B_{2R})$ by the regularity theorem in [24], we have that for all $x \in \mathbb{R}^n$,

$$\tilde{u}(x) = \tilde{u}(0) + \nabla \tilde{u}(0)x + O\left(||\nabla \tilde{u}||_{C^{\alpha}} |x|^{1+\alpha}\right) = u(0) + \nabla u(0)x + O\left(||u||_{C^{1,\alpha}(B_{2R})} |x|^{1+\alpha}\right).$$
(73)

Therefore, by conformal invariance of Q_n and (73),

$$\int_{\Omega} \tilde{u} \cdot v_1^{\epsilon} \wedge \dots \wedge v_n^{\epsilon} = \frac{1}{\epsilon^n} \int_{R^n} \tilde{u}(\epsilon x) \cdot v_1 \wedge \dots \wedge v_n dx$$

$$= \frac{1}{\epsilon^n} \left(\int_{R^n} (u(0) + \epsilon \nabla u(0)x) \cdot v_1 \wedge \dots \wedge v_n dx \right) + O\left(\epsilon^{1-n+\alpha} ||\nabla u||_{C^{\alpha}(B_{2R})} \int_{|x| \leq \frac{2R}{\epsilon}} |x|^{1+\alpha} |\nabla v|^n \right).$$
(74)

We have

$$\int_{\mathbb{R}^n} u(0) \cdot v_1 \wedge \dots \wedge v_n dx = 0, \tag{75}$$

and

$$\int_{|x| \le \frac{2R}{\epsilon}} |x|^{1+\alpha} |\nabla v|^n = O(1) + \int_{1 \le |r| \le \frac{2R}{\epsilon}} r^{\alpha-n} = O(1) + O(\epsilon^{n-\alpha+1}).$$
(76)

Next we show that

$$\int_{\mathbb{R}^n} \nabla u(0) x \cdot v_1 \wedge \dots \wedge v_n dx = c \sum_{i=1}^n \frac{\partial u}{\partial x_i} \cdot e_i = c\gamma.$$
(77)

Proof of (77) : By (17),

$$\begin{split} &\int_{\mathbb{R}^n} \nabla u(0) x \cdot v_1 \wedge \dots \wedge v_n dx \\ &= -\frac{1}{n} \int_{\mathbb{R}^n} \sum_{i=1}^n (\nabla u(0) x)_i \cdot v_1 \wedge \dots \wedge v_i \wedge \dots \wedge v_n dx \\ &= -\frac{1}{n} \int_{\mathbb{R}^n} \sum_{i=1}^n \frac{\partial u}{\partial x_i} \cdot [e_1 \wedge \dots \wedge (x, -1) \wedge \dots \wedge e_n] \frac{1}{\left(1 + |x|^2\right)^n} dx \\ &= -\frac{1}{n} \int_{\mathbb{R}^n} \sum_{i=1}^n \left(\frac{\partial u}{\partial x_i} \cdot e_i\right) e_i \cdot [e_1 \wedge \dots \wedge (-e_{n+1}) \wedge \dots \wedge e_n] \frac{1}{\left(1 + |x|^2\right)^n} dx \\ &= c' \sum_{i=1}^n \frac{\partial u}{\partial x_i} \cdot e_i = c'\gamma, \end{split}$$

where $c' = \int_{\mathbb{R}^n} \frac{dx}{\left(1+|x|^2\right)^n}$. So (72) – (77) together imply that $\int_{\Omega} u \cdot \left(\xi v^\epsilon\right)_1 \wedge \dots \wedge \left(\xi v^\epsilon\right)_n = c' \gamma \epsilon^{1-n} + O\left(\epsilon^{1-n+\epsilon}\right).$ (78)

It follows from (66)(71)(440) that

$$T(\xi v^{\epsilon}) = \left[\epsilon^{-n} \omega_n^{\frac{n}{n+1}} + O(1) \right]^{-1} \left(\epsilon^{-n} n^{n/2} \omega_n + O(1) + \frac{nHc'}{n+1} \gamma + O(\epsilon^{-n+1+\alpha}) \right)$$

= $S + c_0 \epsilon + O(\epsilon^{1+\alpha})$, where $c_0 = \frac{nHc}{n+1} \gamma < 0$.

This finishes the proof of (60). \Box

Proof of Proposition 15: Let ξv^{ϵ} be as in the proof Proposition 16 such that $T(\xi v^{\epsilon}) < S$. It is easy to check the \pm sign in (68) is $(-1)^n$. Take $v = \xi v^{\epsilon}$ for n odd. Take $v = -\xi v^{\epsilon}$ for n even; so $T(v) = T(\xi v^{\epsilon})$ and $Q(v) = -Q(\xi v^{\epsilon})$. Thus for any n, T(v) < S and Q(v) < 0. We may also assume that $\Phi(v) \leq 0$, by replacing v by λv for large $\lambda > 0$. Consider

$$\Phi^*(tv) \equiv E_3(tv) + \frac{nH}{n+1}Q(tv) = t^n E_3(v) + \frac{nH}{n+1}t^{n+1}Q(v).$$
(79)

It is easy to check that Φ^* has a maximum at $t = -\frac{E_3(v)}{Q(v)H}$, with maximum value

$$\Phi^*(tv) = \left[\frac{E_3(v)}{|Q(v)|^{\frac{n}{n+1}}}\right]^{n+1} \frac{1}{|H|^n (n+1)} < \frac{S^{n+1}}{|H|^n (n+1)}.$$
(80)

To show (41), we need to assume that u_0 is small, say, $\int_{\Omega} |\nabla u_0|^n \leq 1$, then by (40)

$$|E_{2}(v)| \leq C \int_{\Omega} \sum_{i=1}^{n-1} |\nabla u_{0}|^{n-i} |\nabla v|^{i}$$

$$\leq C \sum_{i=1}^{n-1} \left(\int_{\Omega} |\nabla u_{0}|^{n} \right)^{\frac{n-i}{n}} \left(\int_{\Omega} |\nabla v|^{n} \right)^{\frac{i}{n}}$$

$$\leq C \left(\int_{\Omega} |\nabla u_{0}|^{n} \right)^{\frac{1}{n}} \sum_{i=1}^{n-1} \left(\int_{\Omega} |\nabla v|^{n} \right)^{\frac{i}{n}}.$$
(81)

It follows

$$\Phi(tv) \leq t^{n} E_{3}(v) + \frac{nH}{n+1} t^{n+1} Q(v) + C \left(\int_{\Omega} |\nabla u_{0}|^{n} \right)^{\frac{1}{n}} \sum_{i=1}^{n-1} t^{i} \left(\int_{\Omega} |\nabla v|^{n} \right)^{\frac{i}{n}} \\
\equiv \Phi^{**}(t, v).$$
(82)

By the construction of v, we have that

$$\epsilon^{n} E_{3}(v) = \sqrt{n^{n}} \omega_{n} + O(\epsilon); \ \epsilon^{n} \int_{\Omega} |\nabla v|^{n} = \sqrt{n^{n}} \omega_{n} + O(\epsilon);$$

$$\epsilon^{n+1} Q(v) = -\omega_{n} + O(\epsilon^{n+1}).$$
(83)

Therefore, there are positive numbers C_1, C_2, C_3 , such that for any number $\beta > 0$,

$$\Phi^{**}(\beta\epsilon, v) = \beta^{n}\epsilon^{n}E_{3}(v) + \frac{nH}{n+1}\beta^{n+1}\epsilon^{n+1}Q(v) + C\left(\int_{\Omega}|\nabla u_{0}|^{n}\right)^{\frac{1}{n}}\sum_{i=1}^{n-1}\beta^{i}\epsilon^{i}\left(\int_{\Omega}|\nabla v|^{n}\right)^{\frac{i}{n}}$$

$$\leq C_{1}\beta^{n} - C_{2}\beta^{n+1} + C_{3}\left(\int_{\Omega}|\nabla u_{0}|^{n}\right)^{\frac{1}{n}}\sum_{i=1}^{n-1}\beta^{i}.$$

$$(84)$$

It follows that there is a β^* such that $\Phi^{**}(\beta\epsilon, v) \leq 0$ for all $0 < \epsilon << 1$ and $\beta \geq \beta^*$. By (82), we have,

$$\sup_{0 \le t} \Phi(tv) \le \sup_{0 \le t \le \beta^* \epsilon} \Phi^{**}(t, v)$$

$$\le \sup_{0 \le t} \Phi^*(t, v) + \sup_{0 \le t \le \beta^* \epsilon} C\left(\int_{\Omega} |\nabla u_0|^n\right)^{\frac{1}{n}} \sum_{i=1}^{n-1} t^i \left(\int_{\Omega} |\nabla v|^n\right)^{\frac{i}{n}}$$

$$\le \sup_{0 \le t} \Phi^*(t, v) + C\left(\int_{\Omega} |\nabla u_0|^n\right)^{\frac{1}{n}} \sum_{i=1}^{n-1} \beta^{*i} \epsilon^i \left(\int_{\Omega} |\nabla v|^n\right)^{\frac{i}{n}}$$

$$\le \sup_{0 \le t} \Phi^*(t, v) + C_4 \left(\int_{\Omega} |\nabla u_0|^n\right)^{\frac{1}{n}},$$
(85)

where C_4 depends on β^* . Since $\sup_{0 \le t} \Phi^*(t, v) < \frac{S^{n+1}}{H^n (n+1)}$, $\sup_{0 \le t} \Phi(tv) < \frac{S^{n+1}}{H^n (n+1)}$, if $\int_{\Omega} |\nabla u_0|^n$ is small enough. \Box

4 Regularity of Conformal Solutions

Our result is

Theorem 17 If u is a conformal solution of (1) and f satisfies (2), then $u \in C^{1,\alpha}(\Omega)$ for some $\alpha \in (0,1)$. If $u = \eta$ on $\partial\Omega$ and $\eta \in C^0(\partial\Omega)$, then $u \in C^0(\overline{\Omega})$.

When n = 2, this theorem was proved by Grüter in 1980 [16]. We will use the main idea of the proof in [16].

Consider the set G of *good* points of u defined by

 $G = \{ x \in \Omega : u \text{ is approximately differentiable at } x, \text{ and} \\ x \text{ is a Lebesgue point of } |\nabla u|^n, \text{ and } |\nabla u|(x) \neq 0 \}.$

Here u is approximately differentiable at a point x_0 with approximate differential $\nabla u(x_0)$, by definition, if there is a $u_0 \in \mathbb{R}^k$ such that for every $\epsilon > 0$,

$$\Phi^{n}[L^{n}\lfloor\Omega\setminus\{x:|u(x)-u_{0}-\nabla u(x_{0})(x-x_{0})|\leq\epsilon|x-x_{0}|\},x_{0}]=0,$$

where Φ^n denotes the n-dimensional *density* and $L^n \lfloor \Omega$ is the Lebesgue measure, restricted to Ω .

We will need the following property for functions in $W^{1,n}(\Omega, \mathbb{R}^k)$.

Proposition 18 ([12] [Theorem 4.5.9]) If $u \in W^{1,n}(\Omega, \mathbb{R}^k)$, then u has weak derivative and approximate differential almost everywhere, and when both exist, they coincide.

For a proof, see [12]. Next, we have

Lemma 19 Suppose $u \in W^{1,n}(\Omega, \mathbb{R}^k)$ and $B \subset \Omega$ is a ball. Then

$$\operatorname{osc}_{B} u \le 4\max\{\alpha_{1}, \alpha_{2}\},\tag{86}$$

where $\alpha_1 = osc_{\partial B} u$, $\alpha_2 = \sup_{y \in G \cap B} \inf_{x \in \partial B} |u(x) - u(y)|$.

Proof: The proof is similar to that in [16]. Denote $\alpha = \max\{\alpha_1, \alpha_2\}$. Take a point $x_1 \in \partial B$. Define $z = u - u(x_1)$ and $v = \max\{|z| - 2\alpha, 0\}$. Then $v \in W_0^{1,n}(\Omega)$. From the definitions of α_1, α_2 , one sees that v = 0 on $G \cap B$. It follows that $\nabla v(y) = 0$ if $y \in G \cap B$. On the complement of $G \cap B$, $\nabla v = 0$ almost everywhere. Therefore $\nabla v = 0$ almost everywhere on B, and so vmust be a constant, which is zero. \Box

We also need the Courant-Lebesgue Lemma.

Lemma 20 Suppose $u \in W^{1,n}(\Omega, \mathbb{R}^k)$ and $B(x,r) \subset \Omega, 0 < r < 1$. Then there is a constant C > 0 and some $\delta \in [\frac{r}{2}, r]$ such that

$$\underset{\partial B(x,\delta)}{osc} u \le CK^{1/n}, \quad \text{where } K = \int_{B(x,r)} |\nabla u|^n.$$
(87)

Proof: Recall that for $y \in B(x,r)$, $|\nabla u(y)|^2 \ge \rho^{-2} |\nabla_{\theta} u(y)|^2$, where $\rho = |y-x|$ and $\theta = \frac{y-x}{\rho} \in S^{n-1}$. It follows

$$\int_{\frac{r}{2}}^{r} \int_{S^{n-1}} \rho^{-1} |\nabla_{\theta} u(y)|^{n} d\theta d\rho \le K.$$
(88)

By Fubini's theorem, there is a $\delta \in [\frac{r}{2}, r]$ such that

$$\int_{\frac{r}{2}}^{r} \int_{S^{n-1}} \delta^{-1} |\nabla_{\theta} u(y)|^{n} d\theta d\rho = \frac{r}{2\delta} \int_{S^{n-1}} |\nabla_{\theta} u(y)|^{n} d\theta.$$
(89)

Since $\delta \leq r$, (88) (89) imply that $\int_{S^{n-1}} |\nabla_{\theta} u(y)|^n d\theta \leq 2K$. (87) follows from Sobolev embedding theorem $W^{1,n}(S^{n-1}, \mathbb{R}^k) \hookrightarrow C^{1/n}$. \Box

This lemma gives a control of the oscillation of u on the boundary $\partial B(x, \delta)$. Our following step is to estimate the interior oscillation. We need some propositions.

Proposition 21 Suppose $u \in W^{1,n}(\Omega, \mathbb{R}^k)$ is conformal and $B \subset \Omega$ is an open subset. Define $D_{\sigma} = B \cap \{x : |u(x) - u(x_0)| < \sigma\}$ for $x_0 \in B \cap G$ and $\sigma > 0$. Then

$$\limsup_{\sigma \to 0} \sigma^{-n} \int_{D_{\sigma}} |\nabla u|^n \ge n^{\frac{n}{2}-1} \omega_{n-1}, \tag{90}$$

where ω_{n-1} is the area of the sphere S^{n-1} .

Remark 22 This Proposition was proved by Grüter [16] when n = 2.

Remark 23 Without the assumption that u is conformal, then (90) still holds, with the right hand being replaced by $n^{-1}\omega_{n-1}$.

Proof: We may assume $u(x_0) = 0$. For $\epsilon, \sigma > 0$, define

$$T_{\epsilon} = B \setminus \{x : |u(x) - \nabla u(x_0)(x - x_0)| \le \frac{\epsilon}{\sqrt{n}} |x - x_0|\},\$$

$$B_{\epsilon} = B \cap \{x : |x - x_0| < r_{\epsilon}\}, \text{ where } r_{\epsilon} = \frac{\sigma \sqrt{n}}{|\nabla u(x_0)| + \epsilon}.$$

We claim

$$B_{\epsilon} \setminus T_{\epsilon} \subset D_{\sigma} \setminus T_{\epsilon}.$$

Indeed, if $x \in B_{\epsilon} \setminus T_{\epsilon}$, then

$$|u(x) - \nabla u(x_0)(x - x_0)| \le \frac{\epsilon}{\sqrt{n}} |x - x_0|;$$

while the conformality condition (8) implies that

$$|\nabla u(x_0)(x-x_0)|^2 \le \frac{1}{n} |\nabla u(x_0)|^2 |x-x_0|^2.$$

Therefore,

$$|u(x)| \le \frac{1}{\sqrt{n}}(|\nabla u(x_0)| + \epsilon)|x - x_0| < \sigma,$$

and so $x \in D_{\sigma} \setminus T_{\epsilon}$.

Note that for any $a, b \ge 0, \epsilon > 0$, and p > 1, there holds

$$a^{p} \ge (1-\epsilon)b^{\epsilon} - (\epsilon^{-1} - 1)|a^{p} - b^{p}|$$

(For a proof, note that $\epsilon b^p + \epsilon^{-1}|a^p - b^p| \ge 2b^{p/2}|a^p - b^p|^{1/2} \ge |a^p - b^p| - (a^p - b^p)$.) Using this inequality, we obtain

$$\sigma^{-n} \int_{D_{\sigma}} |\nabla u(x)|^{n} \geq \sigma^{-n} \int_{B_{\epsilon} \setminus T_{\epsilon}} |\nabla u(x)|^{n}$$

$$\geq \sigma^{-n} (1-\epsilon) \int_{B_{\epsilon} \setminus T_{\epsilon}} |\nabla u(x_{0})|^{n} - (\sigma^{-n} (\epsilon^{-1}-1)) \int_{B_{\epsilon} \setminus T_{\epsilon}} (|\nabla u(x)|^{n} - |\nabla u(x_{0})|^{n}).$$
(91)

We look at each term in (91) as $\sigma \to 0$. For the first term,

$$\sigma^{-n}(1-\epsilon) \int_{B_{\epsilon} \setminus T_{\epsilon}} |\nabla u(x_{0})|^{n} = \sigma^{-n}(1-\epsilon) |\nabla u(x_{0})|^{n} L^{n}(B_{\epsilon} \setminus T_{\epsilon}) \quad (92)$$

$$\rightarrow \frac{\omega_{n-1}}{n} \sqrt{n^{n}}(1-\epsilon) \left(\frac{|\nabla u(x_{0})|}{|\nabla u(x_{0})|+\epsilon} \right)^{n} (1-\Phi^{n}(L \mid T_{\epsilon}, x_{0}))$$

$$= \frac{\omega_{n-1}}{n} \sqrt{n^{n}}(1-\epsilon) \left(\frac{|\nabla u(x_{0})|}{|\nabla u(x_{0})|+\epsilon} \right)^{n}.$$

For the second term in (91), using that x_0 is a Lebesgue point of $|\nabla u|^n$, we have, for fixed ϵ ,

$$\sigma^{-n}(\epsilon^{-1}-1)\int_{B_{\epsilon}\setminus T_{\epsilon}} ||\nabla u(x)|^{n} - |\nabla u(x_{0})|^{n})|$$

$$\leq \frac{(\epsilon^{-1}-1)\sqrt{n^{n}}}{(|\nabla u(x_{0})|+\epsilon)^{n}L^{n}(B_{\epsilon})}\int_{B_{\epsilon}\setminus T_{\epsilon}} ||\nabla u(x)|^{n} - |\nabla u(x_{0})|^{n}|$$

$$\to 0 \text{ as } \sigma \to 0.$$
(93)

Now taking the limit in (91) and using (92) (93), we obtain (90). \Box

Theorem 24 Suppose $B \subset \Omega$ is a ball, $x_0 \in B \cap G$, and $\Sigma > 0$ is a number such that

$$2n\Lambda\Sigma \le 1,\tag{94}$$

$$dist(u(\partial B), u(x_0)) > \Sigma, \tag{95}$$

where Λ is as in (2). Then

$$\int_{B} |\nabla u|^{n} \ge \frac{1}{2} \omega_{n-1} n^{\frac{n}{2}-1} \Sigma^{n}.$$
(96)

Corollary 25 Suppose $B \subset \Omega$ is a ball such that

$$\int_{B} |\nabla u|^{n} \leq \frac{\omega_{n-1}}{2^{\bar{n}+2} n^{n/2+1} \Lambda^{n}}.$$

Then for any $x_0 \in B \cap G$,

dist
$$(u(\partial B), u(x_0)) \le \frac{1}{\omega_{n-1}n^{\frac{n}{2}-1}} \left(\int_B |\nabla u|^n \right)^{1/n}$$
.

Proof of Corollary 25: Let

$$\Sigma = \left(\frac{4}{\omega_{n-1}n^{n/2-1}}\int_B |\nabla u|^n\right)^{1/n}.$$

Then the condition (94) is satisfied, but the conclusion (96) does not hold, therefore, (95) must not hold. \Box

Proof of Theorem 24: For $\sigma \in (0, \Sigma]$, denote

$$D_{\sigma} = B \cap \{x : |u(x) - u(x_0)| < \sigma\}.$$

Let $\lambda \in C_0^1(R, [0, 1])$ be a function such that $\lambda(t) = 0$ for $t \le 0$. For $\rho \in (0, \Sigma)$, define

$$\eta = \lambda(\rho - |u|)u$$

From (94), we have $\eta \in W_0^{1,n}(B, \mathbb{R}^k) \cap L^{\infty}$. Multiplying η to the equation (1) and integrating by parts, we obtain

$$\int_{D_{\rho}} |\nabla u|^{n} \lambda(\rho - |u|) - \int_{D_{\rho}} |\nabla u|^{n-2} \lambda'(\rho - |u|) |\nabla u \cdot \frac{u}{|u|}|^{2}$$
$$= \int_{D_{\rho}} f(x, u, \nabla u) \, u\lambda(\rho - |u|).$$
(97)

Define

$$\Phi(\rho) = \frac{1}{n} \int_{D_{\rho}} |\nabla u|^n \lambda(\rho - |u|).$$

Then we have

$$\Phi'(\rho) \ge \frac{1}{n} \int_{D_{\rho}} |\nabla u|^n \lambda'(\rho - |u|).$$
(98)

From the conformality of u, it follows that $|\nabla u \cdot u|^2 \leq \frac{1}{n} |\nabla u|^2 |u|^2$. The property of λ implies that

$$\lambda'(\rho - |u|) |u| \le \rho \lambda'(\rho - |u|).$$

Therefore, we have that

$$\int_{D_{\rho}} |\nabla u|^{n-2} \lambda'(\rho - |u|) |\nabla u \cdot \frac{u}{|u|}|^2 \leq \frac{1}{n} \int_{D_{\rho}} |\nabla u|^n \lambda'(\rho - |u|) |u|$$

$$\leq \frac{1}{n} \rho \int_{D_{\rho}} |\nabla u|^n \lambda'(\rho - |u|) \leq \rho \Phi'(\rho).$$
(99)

Also, we have

$$\int_{D_{\rho}} f(x, u, \nabla u) \, u\lambda(\rho - |u|) \leq \Lambda \int_{D_{\rho}} |\nabla u|^{n} \lambda(\rho - |u|) \, |u| \\
\leq \Lambda \int_{D_{\rho}} |\nabla u|^{n} \int_{0}^{\rho} \lambda'(\sigma - |u|) |u| \, d\sigma \\
\leq \Lambda \int_{0}^{\rho} \sigma \left(\int_{D_{\rho}} |\nabla u|^{n} \lambda'(\sigma - |u|) |u| \right) \, d\sigma \\
\leq n\Lambda \int_{0}^{\rho} \sigma \Phi'(\sigma) \, d\sigma.$$
(100)

Thus (97) together with (99) and (100) yields

$$n\Phi(\rho) - \rho\Phi'(\rho) \le n\Lambda \int_0^\rho \sigma\Phi'(\sigma)d\sigma.$$
(101)

This can be rewritten as

$$-\left(\frac{\Phi(\rho)}{\rho^n}\right)' \le \frac{n\Lambda}{\rho^{n+1}} \int_0^\rho \sigma \Phi'(\sigma) d\sigma \le n\Lambda \frac{\Phi(\rho)}{\rho^n}.$$
 (102)

This differential inequality implies that $e^{n\Lambda\rho}\frac{\Phi(\rho)}{\rho^n}$ is increasing in ρ ; in particular, $\frac{\Phi(\rho)}{\rho^n}$ has a limit as $\rho \to 0$. Furthermore, for $0 < \rho_1 \le \rho_2 \le \Sigma$, by integrating 102 from ρ_1 to ρ_2 , we have

$$\frac{\Phi(\rho_1)}{\rho_1^n} \le \frac{\Phi(\rho_2)}{\rho_2^n} + n\Lambda \int_0^{\rho_2} \frac{\Phi(\rho)}{\rho^n} d\rho.$$
(103)

The second term of (103) can be estimated by integration by parts and using (101) $\mathbf{I}(\mathbf{x}) = \mathbf{I}(\mathbf{x}) + \mathbf{I}(\mathbf{x})$

$$\int_{0}^{\rho_{2}} \frac{\Phi(\rho)}{\rho^{n}} d\rho \leq \frac{\Phi(\rho_{2})}{\rho_{2}^{n-1}} + \int_{0}^{\rho_{2}} \rho \left(-\frac{\Phi(\rho)}{\rho^{n}}\right)' d\rho \\
\leq \frac{\Phi(\rho_{2})}{\rho_{2}^{n-1}} + n\Lambda \int_{0}^{\rho_{2}} \frac{1}{\rho^{n}} \int_{0}^{\rho} \sigma \Phi'(\sigma) d\sigma d\rho \\
\leq \frac{\Phi(\rho_{2})}{\rho_{2}^{n-1}} + n\Lambda \int_{0}^{\rho_{2}} \frac{\Phi(\rho)}{\rho^{n-1}} d\rho \\
\leq \frac{\Phi(\rho_{2})}{\rho_{2}^{n-1}} + n\Lambda \rho_{2} \int_{0}^{\rho_{2}} \frac{\Phi(\rho)}{\rho^{n}} d\rho.$$
(104)

From the assumption, $n\Lambda\rho_2 \leq n\Lambda\Sigma \leq \frac{1}{2}$. Thus it follows that from (104)

$$\int_{0}^{\rho_{2}} \frac{\Phi(\rho)}{\rho^{n}} d\rho \le 2 \frac{\Phi(\rho_{2})}{\rho_{2}^{n-1}}.$$
(105)

Now (103) and (105) imply that

$$\frac{\Phi(\rho_1)}{\rho_1^n} \le \frac{\Phi(\rho_2)}{\rho_2^n} + 2n\Lambda \frac{\Phi(\rho_2)}{\rho_2^{n-1}} \le 2\frac{\Phi(\rho_2)}{\rho_2^n}.$$
(106)

Given $\epsilon > 0$, we choose $\lambda(t)$ with the additional property that $\lambda(t) = 1$ for $t \ge \epsilon \rho_1$. Then it easy to see

$$\frac{1}{n} \int_{D_{\rho_1(1-\epsilon)}} |\nabla u|^n \le \Phi(\rho_1), \quad \Phi(\rho_2) \le \frac{1}{n} \int_{D_{\rho_2}} |\nabla u|^n.$$
(107)

Apply (106) with $\rho_2 = \Sigma$, and use (107), we then obtain

$$\frac{\int_{D_{\rho_1(1-\epsilon)}} |\nabla u|^n}{\rho_1^n} \le 2 \frac{\int_{D_{\Sigma}} |\nabla u|^n}{\Sigma^n} \le 2 \frac{\int_B |\nabla u|^n}{\Sigma^n}.$$
(108)

Let $\rho_1 \to 0$ in (108) and apply Proposition 21, and then send $\epsilon \to 0$. (96) then follows. \Box

Proof of Theorem 17. We divide the proof into several steps. The first step, showing the continuity of u, is the essential one. The other steps are standard.

(a). *u* is continuous. Fix $x_0 \in \Omega$. Choose R > 0 small enough such that $B(x_0, R) \subset \Omega$ and $\int_{B(x_0, R)} |\nabla u|^n \leq \frac{\omega_{n-1}}{2^{\bar{n}+2}n^{n/2+1}\Lambda^n}$. By the Courant-Lebesgue Lemma 20, there is a $\delta \in [\frac{R}{2}, R]$ such that

$$\underset{\partial B(x_0,\delta)}{\operatorname{osc}} u \le C \left(\int_{B(x_0,R)} |\nabla u|^n \right)^{1/n} \equiv \alpha_1(R).$$

Because $\int_{B(x_0,\delta)} |\nabla u|^n \leq \int_{B(x_0,R)} |\nabla u|^n$, by Corollary 25, for any $x_0 \in B \cap G, B = B(x_0,\delta),$

dist
$$(u(\partial B), u(x_0)) \le \frac{1}{\omega_{n-1}n^{\frac{n}{2}-1}} \left(\int_{B(x_0, R)} |\nabla u|^n \right)^{1/n} \equiv \alpha_2(R).$$

Now Lemma 19 implies that

$$\operatorname{osc}_{B(x_0,\delta)} u \le 4\max\{\alpha_1(R), \alpha_2(R)\} \to 0 \text{ as } R \to 0.$$
(109)

In particular, $\operatorname{osc}_{B(x_0,R/2)} u \to 0$ as $R \to 0$. So u is continuous at x_0 .

(b). $u \text{ is } C^{\beta} \text{ for some } \beta \in (0, 1)$. We claim that if $x_0 \in W$ and R > 0 such that $B(x_0, R) \subset \Omega$ and $osc_{B(x_0, R)} u \Lambda < 1$, then there is a number $\tau \in (0, 1)$ so that for every ball $B(x, r) \subset B(x_0, R)$

$$\int_{B(x,r/2)} |\nabla u|^n \le \tau \int_{B(x,r)} |\nabla u|^n.$$
(110)

By iteration, we have for some constants C and $\gamma \in (0, 1)$,

$$\int_{B(x,r)} |\nabla u|^n \le Cr^{\gamma} \text{ for } x \in B(x_0, R/2) \text{ and } r \in (0, R/2).$$

That u is C^{β} for some $\beta \in (0, 1)$ follows from Morrey's Lemma [23][3.5.2]. The proof of (110) is a standard "hole-filling" method. Let \bar{u} be the mean value of u on $B(x,r) \setminus B(x,r/2)$ and $\eta \in C_0^1(B(x,r), [0,1])$ be a cut-off function such that $\eta = 1$ on B(x,r/2) and $|\nabla \eta| \leq 3/r$. Take $\phi = (u - \bar{u})\eta$, then $\phi \in W_0^{1,n}(B(x,r), \mathbb{R}^k)$. Multiply ϕ to the equation (1) and integrate. We then get

$$\left| \begin{cases} \int_{B(x,r)} \eta |\nabla u|^n + \int_{B(x,r)} |\nabla u|^{n-2} \nabla u \nabla \eta (u - \bar{u}) \\ \int_{B(x,r)} f(x, u, \nabla u) \eta (u - \bar{u}) \\ \leq osc_{B(x_0,R)} u \Lambda \int_{B(x,r)} |\nabla u|^n. \end{cases}$$

$$(111)$$

By Hölder and Poincare's inequalities, we estimate the second term of (111),

$$\begin{aligned} \left| \int_{B(x,r)} |\nabla u|^{n-2} \nabla u \nabla \eta (u - \bar{u}) \right| \\ &\leq C_1 \left(\int_{B(x,r) \setminus B(x,r/2)} |\nabla u|^n \right)^{(n-1)/n} \left(\frac{1}{r} \int_{B(x,r) \setminus B(x,r/2)} |u - \bar{u}|^n \right)^{1/n} \\ &\leq C_2 \int_{B(x,r) \setminus B(x,r/2)} |\nabla u|^n, \end{aligned}$$
(112)

where C_1 and C_2 depend only on n and k. Put (112) back to (111) and note the property of η . It follows

$$\int_{B(x,r/2)} |\nabla u|^n - C_2 \int_{B(x,r)\setminus B(x,r/2)} |\nabla u|^n \le \operatorname{osc}_{B(x_0,R)} u \Lambda \int_{B(x,r)} |\nabla u|^n$$

or

$$(C_2+1)\int_{B(x,r/2)} |\nabla u|^n \le \left(C_2 + osc_{B(x_0,R)} u\Lambda\right) \int_{B(x,r)} |\nabla u|^n$$

Let $\tau = \left(C_2 + osc_{B(x_0,R)}u\Lambda\right) / (C_2 + 1)$. Then (43) follows.

(c). u is $C^{1,\alpha}$ for some $\alpha \in (0,1)$. For the proof of $C^{1,\alpha}$ regularity based on C^{β} , we refer [17] or [13].

(d). *u* is continuous up to $\partial\Omega$. This was proved in [24] [Theorem 4.1]. \Box

Acknowledgement. The authors wish to thank M. Fuchs for bring up their attention to his results in [10][14][9] and other works on surfaces with prescribed mean curvature vectors and on n-harmonic maps.

References

- E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rat. Mech. Anal. 86 (1984) 125-145.
- [2] F. Almgren, Optimal isoperimetric inequalities. Indiana University Mathematical Journal, No. 3, Vol. 35 (1986) 451-547.
- [3] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications. J. Funct. anal. 14 (1973) 349-381.
- [4] F. Bethuel, On the singular set of stationary harmonic maps. Man. Math. 78 (1993), no.4, 417-443.
- [5] F. Bethuel, Un résultat de régularité pour les solutions de l'équation des surfaces à courbure moyenne prescrite. C. R. Acad. Sci. Paris, t. 314, Série I (1992) 1003-1007.
- [6] H. Brezis and J.-M. Coron, Multiple solutions of H-systems and Rellich's conjecture. Comm. Pure Appl. Math. 37 (1984) 149-187.

- [7] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure & Appl. Math. Vol. XXXVI (1983) 437-477.
- [8] B. Dacorogna, *Direct methods in the calculus of variations*. Springer, Berlin-Heildelberg-New York (1989).
- [9] F. Duzaar and M. Fuchs, On removable singularities of p-harmonic maps, Ann. Inst. Henri Poincare, Vol. 7, 5 (1990) 385-405.
- [10] F. Duzaar and M. Fuchs, Existenz und Regularität von Hyperflächen mit vorgeschriebener mittlerer krummung. Analysis no.2-3, 10 (1990) 193-230.
- [11] L. C. Evans, Partial regularity for stationary harmonic maps into spheres. Arch. Rat. Mech. Anal. 116 (1991) 101-113.
- [12] H. Federer, Geometric Measure Theory. Grundelhren 153, Berlin-Heidelberg-New York, 1969.
- [13] M. Fuchs, p-harmonic maps obstacle problems, Part 1: Partial regularity Theory. Annali Mat. Pura Appl. 4, 156(1990) 127-158.
- [14] M. Fuchs, The blow-up of p-harmonic maps. Manuscripta Math. 81 (1993) 89-94.
- [15] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. Math. Studies 105, Princeton Univ. Press, Princeton (1983).
- [16] M. Grüter, Regularity of weak H-surfaces. J. für reine u. angew. Math. 329 (1981) 1-15.
- [17] R. Hardt and F.-H. Lin, Mappings minimizing the L^p norm of gradient. Comm. Pure Appl. Math. Vol. XL (1987) 555-588.
- [18] R. Hardt, F.-H. Lin and L. Mou, Strong convergence of p-harmonic mappings. Progress in partial differential equations: the Metz surveys 3, edited by M. Chipot, J.S.J. Paulin and I. Shafris. Longman Scientific Technical, 1994.

- [19] F. Hélein, Regularite des applications faiblement harmoniques entre une surface et variete riemannienne, CRAS, Paris 312 (1991) 591-596.
- [20] E. Heinz, Ein Regularitätssatz für schwache Lösungen nichtlinearer elliptischer Systeme. Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl. II, 1 (1977).
- [21] S. Hildebrandt, On the Plateau problem for surfaces of constant mean curvature. Comm. Pure Appl. Math. 23 (1970) 97-114.
- [22] J. Lewis, Smoothness of certain degenerate elliptic systems. Proc. Amer. Math. Soc. 80 (1980) 259-265.
- [23] C. B. Morrey, Multiple integrals in the calculus of variations. Berlin-Heidelberg-New York, 1966.
- [24] L. Mou and P. Yang, Regularity of n-harmonic maps. Journal of Geometric Analysis. 6(1996), no. 1, 91-112.
- [25] R. Schoen, Analytic aspects of the harmonic map problems, in "Seminar on Nonlinear PDE" edited by S. S. Chern, Springer-Verlag, New York, Berlin, Heidelberg, 1984.
- [26] R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps. Jour. Diff. Geom. 17 (1982) 307-335.
- [27] Steffen, On the existence of surfaces with prescribed mean curvature and boundary. Math. Z. 146 (1976) 113-135.
- [28] M. Struwe, Plateau's problem and the calculus of variations. Princeton University Press, Mathematical Notes 35 (1988).
- [29] M. Struwe, Non-uniqueness in the Plateau problem for surfaces of constant mean curvature. Arch. Rat. Mech. Anal. 93 (1986) 135-157.
- [30] T. Toro and C.Y. Wang, Compactness properties of weakly p-harmonic mapping into homogeneous spaces. Ind. Univ. Math. Jour. Vol. 44, No.1 (1995).
- [31] H. C. Wente, An existence theorem for surface of constant mean curvature. J. Math. Anal. Appl. 26 (1969), 318-344.

- [32] H. C. Wente, The Dirichlet problem with a volume constraint. Man. Math. 11 (1974) 141-157.
- [33] H. C. Wente, Large solutions to volume constrained Plateau problem. Arch. Rat. Mech. Anal. 75 (1980) 59-77.
- L.M.: Department of Mathematics, University of Iowa, Iowa City, IA 52242 mou@math.uiowa.edu

Current address: Department of Mathematics, Bradley University, Peoria, IL 61625

mou@bradley.bradley.edu

P.Y.: Department of Mathematics, University of Southern California, Los Angeles, CA 90089

pyang@math.usc.edu