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Abstract For a controlled stochastic differential equation with a Bolza type
performance functional, a variational formula for the functional in a given
control process direction is derived, by means of backward stochastic differ-
ential equations. As applications, some Pontryagin type maximum principles
are established for optimal controls of control problems, for saddle points of
open-loop two-person zero-sum differential games, and for Nash equilibria
of N -person nonzero-sum differential games. The results presented in this
paper generalizes/simplifies the relevant ones found in [12] [17]. In addition,
a sufficient existence condition of Nash equilibria is proved for nonzero-sum
games.
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1. Introduction.

Let (Ω,F , lF, lP) be a complete filtered probability space, on which a d-dimensional
standard Brownian motion W (·) is defined with lF = {Ft}t≥0 being its natural filtration,
augmented by all lP-null sets in F . We consider a controlled stochastic differential
equation (SDE, for short):

(1.1)

{
dx(t) = b(t, x(t), u(t))dt + σ(t, x(t), u(t))dW (t), t ∈ [0, T ],
x(0) = x0,
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and a performance functional vector

(1.2) J(u(·)) = lE
{∫ T

0
f(t, x(t), u(t))dt + h(x(T ))

}
,

where b, σ, f , and h are given maps taking values in Euclidean spaces lRn, lRn×d,
lRn, and lRn, respectively. More assumptions will be made in the next section. In
the above, x(·) is the (controlled) state process valued in lRn, and u(·) is the control
process valued in some set U ⊆ lRm (bounded or unbounded). Let us indicate some
special cases of the above setting. When N = 1, one can formulate an optimal control
problem with state equation (1.1) and cost/payoff functional (1.2). When N ≥ 2,
u(·) = (u1(·), · · · , uN (·)) with u`(·) being the control of the `-th player, valued in
U` ⊆ lRm` (with m1 + · · ·+ mN = m), which is to be chosen to optimize J`(u(·)), then
one has an N -person (possibly) nonzero-sum differential game. If N = 2 and

(1.3) J1(u(·)) + J2(u(·)) = 0, ∀u(·),
then one has a two-person zero-sum differential game. In addition, (1.1)–(1.2) covers
the so-called multi-objective problems (which will be carefully discussed in a forthcom-
ing paper). Indeed, (1.1)–(1.2) gives a very general model for a wide class of (stochastic)
optimization problems. For optimal control problems, zero-sum or nonzero-sum differ-
ential games, one is mainly interested in optimal controls, saddle points, and Nash (or
other type) equilibria. We may generally refer to them as extreme controls.

The purpose of this paper is to present necessary conditions for extreme controls in
a unified way. The main idea is to derive a variational formula for the performance
functional vector in certain given “control process direction”, by means of backward sto-
chastic differential equations (BSDEs, for short) and duality principle. Since U may be
non-convex, spike variations have to be used as the perturbation of the control process.
A little different from [12] and [17], neither the variational systems nor the correspond-
ing Taylor type expansions of the state process and the performance functional (with
respect to a control variation) will be used. Instead, we first express the change of the
performance functional directly in terms of the Hamiltonian and associated first order
and second order adjoint systems (which are BSDEs). Then we obtain a representation
for the variation and “directional derivative” of the performance functional. This idea
of using the adjoint systems alone is very natural because the statement of Pontryagin
type maximum principle involves only the adjoint systems, not the variational systems.
Similar idea is used in [15] for optimal control of variational inequalities.

This paper is organized as follows. The assumptions, notations and some basic esti-
mates (Proposition 2.1, Corollary 2.1) are given in Section 2. In Section 3, we obtain
two representations (first order and second order) for the difference of the performance
functional in terms of the Hamiltonian and adjoint processes (Lemma 3.1). These rep-
resentations may be of interest in their own right. In Section 4 we use the second order
representation in Section 3 to derive a representation for the variation and “directional
derivative” of the performance functional along with any spike variation (Theorem 4.1).
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In Section 5, we apply the “directional derivative” formula from Section 4 to general-
ize the classical maximum principle for stochastic optimal controls (Theorem 5.1) and
derive extreme principles for Nash equilibria of nonzero-sum games (Theorem 5.2) and
minimax principle for saddle points of a zero-sum game (Theorem 5.3). In Section 6, we
use the first order difference representation in Section 3 to obtain a sufficient condition
for Nash equilibria of a nonzero-sum game (Theorem 6.2).

Theorem 6.2 shows that open-loop Nash equilibria exist under reasonable conditions.
While equilibria of other types (closed-loop, strategies, etc.) are commonly considered
for differential games, all of them (if exist) induce open-loop controls. A natural ques-
tion is whether they induce open-loop Nash equilibria. This question is one of our
motivations for studying open-loop equilibria of differential games; see [11] and [16] for
some recent results on linear-quadratic stochastic games.

2. Assumptions and Basic Estimates

In this section we will make some preliminaries. First of all, besides the Euclidean
space lRn and the matrix space lRn×d (of all (n× d) matrices), we let Sn be the set of
all (n× n) symmetric matrices. For any x, y ∈ lRn, we use xT y and x · y to denote the
inner product of these two vectors. For a function ϕ : lRn → lR, denote by ∇xϕ = ϕx

its gradient (as a column vector) and ∇2
xϕ = ϕxx its Hessian (a symmetric matrix).

If ϕ : lRn → lRk (with k ≥ 2), then ϕx =
(

∂ϕi

∂xj

)
1≤i≤k,1≤j≤n

is the corresponding

(k × n) Jacobian matrix. In what follows, C represents a generic constant, which can
be different from line to line.

Next we introduce some spaces of random variables and stochastic processes. For
any α, β ∈ [1,∞), we let

Lβ
FT

(Ω; lRn) ∆=
{

ξ : Ω → lRn
∣∣ ξ is FT -measurable, lE|ξ|β < ∞

}
,

Lβ
F (0, T ; lRk) ∆=

{
ϕ : [0, T ]× Ω → lRk

∣∣ ϕ(·) is lF-adapted, lE
∫ T

0
|ϕ(t)|βdt < ∞

}
,

Lβ
F (Ω; Lα(0, T ; lRk)) ∆=

{
ϕ : [0, T ]× Ω → lRk

∣∣ ϕ(·) is lF-adapted, ||ϕ||α,β < ∞
}

,

Lβ
F (Ω; C([0, T ]; lRk)) ∆=

{
ϕ : [0, T ]× Ω → lRk

∣∣ ϕ(·) is lF-adapted,

has continuous paths, ||ϕ||∞,β < ∞
}

,

where ||ϕ||α,β and ||ϕ||∞,β are norms defined as

||ϕ||α,β
∆=

[
lE

( ∫ T

0
|ϕ(t)|αdt

) β
α
] 1

β ; ||ϕ||∞,β
∆=

[
lE

(
sup

t∈[0,T ]
|ϕ(t)|β

)] 1
β
.
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For a subset U ∈ lRm, we define

Lβ
F (Ω; Lα(0, T ;U)) ∆=

{
u(·) ∈ Lβ

F (Ω; Lα(0, T ; lRm))
∣∣ u(t) ∈ U, a.e., a.s.

}
,

Lβ
F (0, T ;U) ∆=

{
u(·) ∈ Lβ

F (0, T ; lRm)
∣∣ u(t) ∈ U, a.e., a.s.

}
.

Now we introduce the following standing assumptions.

(S1) The control space U ⊆ lRm is nonempty.

(S2) Maps b : [0, T ] × lRn × U × Ω → lRn, σ : [0, T ] × lRn × U × Ω → lRn×d,
f : [0, T ]× lRn × U × Ω → lRn, and h : lRn × Ω → lRn satisfy the following:

(i) b, σ, f are B([0, T ]× lRn×U)⊗FT -measurable, and h is B(lRn)⊗FT -measurable,
where B(G) is the Borel σ-field of the metric space G.

(ii) For each (x, u) ∈ lRn × U , t 7→ (b(t, x, u), σ(t, x, u), f(t, x, u)) is lF-adapted.

(iii) For almost all (t, u, ω) ∈ [0, T ]× lRn × Ω, the map

x 7→ (b(t, x, u, ω), σ(t, x, u, ω), f(t, x, u, ω), h(x, ω))

is twice continuously differentiable with all the partial derivatives of b, σ, f , and h with
respect to x up to order 2 being continuous in (x, u) with appropriate growths. More
precisely, there exist a constant L > 0, a process ρ(·) ∈ Lβ

F (Ω; L2(0, T ; lR)) (with β ≥ 1)
and a modulus of continuity ω̃ : [0,∞) → [0, 1] such that for ϕ = bj , σij (1 ≤ i ≤ d,
1 ≤ j ≤ n),

(2.1)





|ϕ(t, x, u)| ≤ L
[
ρ(t) + |x|+ |u|

]
,

|ϕx(t, x, u)|, |ϕxx(t, x, u)| ≤ L,

|ϕxx(t, x, u)− ϕxx(t, x̃, u)| ≤ Lω̃(|x− x̃|),
and for 1 ≤ ` ≤ N ,

(2.2)





|∇k
xf `(t, x, u)| ≤ L

[
ρ(t) + |x|+ |u|

]2−k
for k = 0, 1, 2,

|f `
xx(t, x, u)− f `

xx(t, x̃, u)| ≤ Lω̃(|x− x̃|),
|∇k

xh`(x)| ≤ L(ρ(T ) + |x|)2−k for k = 0, 1, 2,
|h`

xx(x)− h`
xx(x̃)| ≤ Lω̃(|x− x̃|).

The set of admissible controls is defined as

Uβ [0, T ] ∆=Lβ
F (Ω; L2(0, T ;U)).

The following result gives the well-posedness of the state equation as well as some useful
estimates.
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Proposition 2.1. Let (S1)–(S2) hold. Then for any u(·) ∈ Uβ[0, T ] with β ≥ 1, state

equation (1.1) admits a unique strong solution x(·) ∈ Lβ
F (Ω; C([0, T ]; lRn)), and the

following estimate holds:

(2.3)

lE
[

sup
s∈[0,t]

|x(s)|β
]

≤ ClE
{
|x0|β +

( ∫ t

0
|b(s, 0, u(s))|ds

)β
+

( ∫ t

0
|σ(s, 0, u(s))|2ds

)β
2
}

≤ ClE
{
|x0|β +

( ∫ t

0
|ρ(s)|2ds

)β
2 +

( ∫ t

0
|u(s)|2ds

)β
2
}

.

Further, if x̄(·) is the unique solution corresponding to (x̄0, ū(·)) ∈ lRn ×Uβ[0, T ], then

(2.4)

lE
[

sup
s∈[0,t]

|x(s)− x̄(s)|γ
]

≤ C
[
|x0 − x̄0|γ + E

( ∫ t

0
|b(s, x̄(s), u(s))− b(s, x̄(s), ū(s))|ds

)γ

+E
( ∫ t

0
|σ(s, x̄(s), u(s))− σ(s, x̄(s), ū(s))|2ds

) γ
2
]
,

for all γ ≥ 1.

Proof. The existence and uniqueness of the strong solution to (1.1) follows from the
contraction mapping theorem in the usual manner. We now prove (2.3). Suppose
(x0, u(·)) ∈ lRn×Uβ [0, T ] is given and x(·) is the strong solution of (1.1). By assumption
(S2), |ϕ(t, x, u)| ≤ |ϕ(t, 0, u)| + L|x| for ϕ = b and σ. Then by Burkholder–Davis–
Gundy’s inequality,
(2.5)

lE
[

sup
s∈[0,t]

|x(s)|β
]

≤ ClE
{
|x0|β +

( ∫ t

0
|b(s, x(s), u(s))|ds

)β
+

( ∫ t

0
|σ(s, x(s), u(s))|2ds

)β
2
}

≤ ClE
{
|x0|β +

( ∫ t

0
|b(s, 0, u(s))|ds

)β
+

( ∫ t

0
|σ(s, 0, u(s))|2ds

)β
2 +

( ∫ t

0
|x(s)|2ds

)β
2
}

≤ ClE
{
|x0|β +

( ∫ t

0
|b(s, 0, u(s))|ds

)β
+

( ∫ t

0
|σ(s, 0, u(s))|2ds

)β
2 + t

β
2 sup

s∈[0,t]
|x(s)|β

}
.

Note that the constant C > 0 in (2.5) depends on β and the constant L from (S2) only,
not on the interval [0, t]. By taking δ = (2C)−

2
β , we have

(2.6)
lE

[
sup

s∈[0,δ]
|x(s)|β

]

≤ 2ClE
{
|x0|β +

( ∫ δ

0
|b(s, 0, u(s))|ds

)β
+

( ∫ δ

0
|σ(s, 0, u(s))|2ds

)β
2
}

.



544 Libin Mou and Jiongmin Yong

Next, on [δ, 2δ], similar to the above, we have

(2.7)

lE
[

sup
s∈[δ,2δ]

|x(s)|β
]

≤ ClE
{
|x(δ)|β +

( ∫ 2δ

δ
|b(s, 0, u(s))|ds

)β
+

( ∫ 2δ

δ
|σ(s, 0, u(s))|2ds

)β
2

+δ
β
2 sups∈[δ,2δ] |x(s)|β

}
,

where the constant C in (2.7) is the same as that in (2.5). Hence, we obtain

(2.8)
lE

[
sup

s∈[δ,2δ]
|x(s)|β

]

≤ 2ClE
{
|x(δ)|β+

( ∫ 2δ

δ
|b(s, 0, u(s))|ds

)β
+

( ∫ 2δ

δ
|σ(s, 0, u(s))|2ds

)β
2
}

.

Since the step-length δ > 0 will not shrink, by induction, we obtain (2.3).

Note that under (iii) of (S2), we have

(2.9) |b(t, 0, u)|+ |σ(t, 0, u)| ≤ 2L(ρ(t) + |u|).
So the second inequality (2.3) follows.

In the same fashion, we can prove (2.4).

Note that for any u(·) ∈ Uβ[0, T ] (with β ≥ 1), the right hand side of (2.3) is finite.
By assumption (S2), we have{

|h(x(T ))| ≤ L(ρ(T ) + |x(T )|)2,
|f(t, x(t), u(t))| ≤ L(ρ(t) + |x(t)|+ |u(t)|)2.

Hence, combining Proposition 2.1 with the assumption on f and h, we see that for any
β ≥ 2, the performance functional vector J(u(·)) is well-defined on Uβ[0, T ].

Note that

(2.10)





Lβ
F (0, T ;U) ⊆ Uβ [0, T ], β > 2,

Lβ
F (0, T ;U) ⊇ Uβ[0, T ], β < 2,

Lβ
F (0, T ;U) = Uβ[0, T ], β = 2.

So the performance functional vector J(u(·)) is also well-defined on Lβ
F (0, T ;U) for

β ≥ 2. While we will focus on the admissible set Uβ[0, T ] in this paper, all of the
results obtained in this paper for Uβ [0, T ] also hold for Lβ

F (0, T ;U) with β ≥ 2.

The estimate (2.4) show that although we might only have x̄(·) ∈ Lβ
F (Ω; C([0, T ]; lRn))

for ū(·) ∈ Uβ[0, T ], the change of the state (the left hand side of (2.4)) is controlled by
the perturbation of ū(·) to u(·). Here γ might be larger than β.

From the estimates in Proposition 2.1, we obtain
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Corollary 2.1. Let (x̄(·), ū(·)) and (x(·), u(·)) be two admissible pairs, and ∆x(·) =
x(·)− x̄(·). Then there exist a constant C > 0 independent on ū(·) and u(·) such that

(2.11)
||x̄(·)||∞,β ≤ C

[
||x̄(0)||∞,β + ||ρ(·)||2,β + ||ū(·)||2,β

]
,

||∆x(·)||∞,β ≤ C
[
||∆x(0)||∞,β + ||(2|x̄|+ 2ρ + |ū|+ |u|)I{u 6=ū}||2,β

]
,

where ||x̄(0)||∞,β =
[
lE|x̄(0)|β

] 1
β
, and I{u 6=ū}(t, ω) = 1 if u(t, ω) = ū(t, ω) and 0 other-

wise.

Proof. The first inequality follows from (2.3) written in norms. To prove the second
inequality, we use (2.4). By assumption (S2), we have that for ϕ = b and σ,

(2.12) |ϕ(t, x̄(t), u(t))− ϕ(t, x̄(t), ū(t))| ≤ L
[
2ρ(t) + 2|x̄(t)|+ |ū(t)|+ |u(t)|

]
I{u 6=ū}.

By (2.4) in Proposition 2.1 with γ = β,

(2.13)

||∆x(·)||∞,β = lE
[

sup
t∈[0,T ]

|∆x(t)|β
] 1

β

≤ ClE
[
|∆x(0)|β +

( ∫ T

0
|∆ub(t, u(t))|dt

)β
+

( ∫ T

0
|∆uσ(t, u(t))|2(t)dt

)β
2
] 1

β

≤ C
[
||∆x(0)||∞,β + ||(2|x̄|+ 2ρ + |ū|+ |u|)I{u 6=ū}||2,β

]
.

3. Representations for Difference of the Performance Functional
Vector

For given maps b, σ, f , and h satisfying (S1)–(S2), we define the associated Hamil-
tonian as follows:

(3.1) H`(t, x, u, p`, q`) = f `(t, x, u) + p` · b(t, x, u) +
d∑

i=1

q`
i · σi(t, x, u),

(t, x, u, p`, q`) ∈ [0, T ]× lRn × U × lRn × lRn×d, 1 ≤ ` ≤ N.

For any given admissible pair (x̄(·), ū(·)), we introduce the following system of linear
BSDEs:

(3.2)

{
dp`(t) = −H`

x(t, x̄(t), ū(t), p`(t), q`(t))dt + q`(t)dW (t),
p`(T ) = h`

x(x̄(T )), 1 ≤ ` ≤ N,



546 Libin Mou and Jiongmin Yong

and
(3.3)



dP `(t) = −
{

H`
xx(t) + P `(t)bx(t) + bx(t)T P `(t)

+
∑d

i=1

[
σi

x(t)T P `(t)σi
x(t) + Q`

i(t)σ
i
x(t) + σi

x(t)T Q`
i(t)

]}
dt +

∑d
i=1 Q`

i(t)dWi(t),

P `(T ) = h`
xx(x̄(T )), 1 ≤ ` ≤ N,

where

(3.4)

{
bx(t) = bx(t, x̄(t), ū(t)), σi

x(t) = σi
x(t, x̄(t), ū(t)), 1 ≤ i ≤ d,

H`
xx(t) = H`

xx(t, x̄(t), ū(t), p`(t), q`(t)),

with {(p`(·), q`(·)), 1 ≤ ` ≤ N} being the (unique) adapted solution of (3.2). We
call (3.2) and (3.3) the first and the second adjoint equations of (1.1)–(1.2), respec-
tively. We also refer to the adapted solutions {(p`(·), q`(·)), 1 ≤ ` ≤ N} of (3.2) and
{(P `(·), Q`(·)), 1 ≤ ` ≤ N} of (3.3) as the first order and the second order adjoint pro-
cesses associated with (x̄(·), ū(·)), respectively. We have the following result concerning
the unique solvability of (3.2) and (3.3).

Proposition 3.1. Let (S1)–(S2) hold and (x̄(·), ū(·)) be an admissible pair with ū(·) ∈
Uβ [0, T ] (β > 1). Then (3.2) and (3.3) admit unique adapted solutions, respectively.
Moreover, the following estimates hold:

(3.5) lE
[

sup
t∈[0,T ]

|p`(t)|β
]

+ lE
[ ∫ T

0
|q`(t)|2dt

]β
2 ≤ C

{
1 +

( ∫ T

0
|ū(s)|2ds

)β
2
}

.

(3.6) lE
[

sup
t∈[0,T ]

|P `(t)|β
]

+
d∑

i=1

lE
[ ∫ T

0
|Q`

i(t)|2dt
]β

2 ≤ C
{

1 +
( ∫ T

0
|ū(s)|2ds

)β
2
}

.

Proof. By the definition of H`, we have

(3.7)

H`
x(t, x̄(t), ū(t), p`(t), q`(t))

= bx(t, x̄(t), ū(t))p`(t) +
d∑

i=1

σi
x(t, x̄(t), ū(t))q`

i (t) + f `
x(t, x̄(t), ū(t)).
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Hence, by (S2) and [6], we can find a unique adapted solution {(p`(·), q`(·)), 1 ≤ ` ≤ N}
to (3.2). Moreover,

(3.8)

lE
[

sup
t∈[0,T ]

|p`(t)|β
]

+ lE
[ ∫ T

0
|q`(t)|2dt

]β
2

≤ ClE
{
|h`

x(x̄(T ))|β +
( ∫ T

0
|f `

x(t, x̄(t), ū(t))|dt
)β}

≤ C
{

1 + lE|x̄(T )|β + lE
[ ∫ T

0

(
ρ(t) + |x̄(t)|+ |ū(t)|

)
dt

]β}

≤ C
{

1 + lE
( ∫ T

0
|ū(s)|2ds

)β
2
}

.

This proves estimate (3.5).

Next, by (S2), we have

(3.9)




|h`

xx(x̄(T ))| ≤ L,

|H`
xx(t)| ≤ L

(
1 + |p`(t)|+ |q`(t)|

)
.

Hence, by [6], we have the existence and uniqueness of adapted solution to (3.3). More-
over,

(3.10)

lE
[

sup
t∈[0,T ]

|P `(t)|β +
d∑

i=1

lE
( ∫ T

0
|Q`

i(t)|2dt
)β

2

]

≤ ClE
{
|h`

xx(x̄(T ))|β +
( ∫ T

0
|H`

xx(t)|dt
)β}

≤ ClE
{

1 +
[ ∫ T

0

(
|p`(t)|+ |q`(t)|

)
dt

]β}

≤ C
[
1 + lE

( ∫ T

0
|ū(t)|2dt

)β
2
]
.

This proves (3.6).

We point out that for N ≥ 2, when the admissible pair (x̄(·), ū(·)) is given, BSDEs
(3.2) consists of N decoupled BSDEs. However, when (ū(·)) ≡ (ū1(·), · · · , ūN (·)) is,
say, a Nash equilibrium, then the corresponding optimality system will be a system
of forward-backward stochastic differential equations (FBSDEs, for short), in which
all the components will be coupled through the necessary conditions satisfied by the
components ū`(·) of ū(·). We will see this clearer later. The same remark applies to
BSDE system (3.3).

Now let (xε(·), uε(·)) be another admissible pair. Our first main result gives two
representations for the difference J(uε(·)) − J(ū(·)) in terms of the Hamiltonian and
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adjoint processes associated with (x̄(·), ū(·)), as well as other relevant expressions. To
state the result, let us introduce the following notations:

(3.11)





∆x(t) = xε(t)− x̄(t), t ∈ [0, T ],
∆0

xh`(T ) = h`(xε(T ))− h`(x̄(T )),
∆1

xh`(T ) = ∆xh`(T )− h`
x(x̄(T ))T ∆x(T ),

∆2
xh`(T ) = ∆1

xh`(T )− 1
2
∆x(T )T h`

xx(x̄(T ))∆x(T ),

and

(3.12)





∆0
xuH`(t) = H`(t, xε(t), uε(t), p(t), q(t))−H`(t, x̄(t), ū(t), p(t), q(t)),

∆1
xuH`(t) = ∆xuH`(t)−H`

x(t, x̄(t), ū(t), p(t), q(t)) ·∆x(t),

∆2
xuH`(t) = ∆1

xuH`(t)− 1
2
∆x(t)T H`

xx(t, x̄(t), ū(t), p(t), q(t))∆x(t).

The definitions of ∆k
xuf `(t), ∆k

xub(t), and ∆k
xuσi(t) (with k = 0, 1, 2) are similar to the

above.

Lemma 3.1. Let (S1)–(S2) hold. Let (x̄(·), ū(·)) be any admissible pair, whose asso-
ciated Hamiltonian is H, and the associated first and second order adjoint processes
are {(p`(·), q`(·)), 1 ≤ ` ≤ N} and {(P `(·), Q`(·)), 1 ≤ ` ≤ N}. Let (xε(·), uε(·)) be
another admissible pair. Then for each 1 ≤ ` ≤ N ,
(3.13)

J `(uε(·))− J `(ū(·))

= lE
[
∆1

xh`(T ) +
∫ T

0
∆1

xuH`(t)dt
]
,

= lE
{

∆2
xh`(T ) +

∫ T

0

[
∆2

xuH`(t) + ∆x(t)T
(
P `(t)∆1

xub(t) +
d∑

i=1

Q`
i(t)∆

1
xuσi(t)

)

+
1
2

d∑

i=1

(
∆0

xuσi(t)T P `(t)∆0
xuσi(t)−∆x(t)T σi

x(t)T P `(t)σi
x(t)∆x(t)

)]
dt

}
,

where σi
x(t) is the same as in (3.4).

We refer to the first equality in (3.13) as the first order representation, and to the sec-
ond equality in (3.13) as the second order representation, respectively, for the difference
J(uε(·))− J(ū(·)).
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Proof. By (1.2), we have (note (3.11) and (3.12))

(3.14)

J `(uε(·))− J `(ū(·))

= lE
{

h`(xε(T ))− h`(x̄(T )) +
∫ T

0

[
f `(t, xε(t), uε(t))− f `(t, x̄(t), ū(t))

]
dt

}

= lE
[
∆0

xh`(T ) +
∫ T

0
∆0

xuf `(t)dt
]
,

Now we let {(p`(·), q`(·)), 1 ≤ ` ≤ N} be the adapted solution of (3.2). From (1.1), we
know that

(3.15) d[∆x(t)] = ∆0
xub(t)dt + ∆0

xuσ(t)dW (t), ∆x(0) = 0.

Applying Itô’s formula, we have (note (3.12))
(3.16)

lE
[
h`

x(x̄(T )) ·∆x(T )
]

= lE
[
p`(T ) ·∆x(T )

]

= lE
∫ T

0

[
−H`

x(t, x̄(t), ū(t), p`(t), q`(t)) ·∆x(t) + p`(t) ·∆0
xub(t) +

d∑

i=1

q`
i (t) ·∆0

xuσi(t)
]
dt

= lE
∫ T

0

[
−H`

x(t, x̄(t), ū(t), p`(t), q`(t)) ·∆x(t) + ∆0
xuH`(t)−∆0

xuf `(t)
]
dt

= lE
∫ T

0

[
∆1

xuH`(t)−∆0
xuf `(t)

]
dt.

Hence, by (3.14),

(3.17)

J `(uε(·))− J `(ū(·)) = lE
[
∆0

xh`(T ) +
∫ T

0
∆0

xuf `(t)dt
]

= lE
[
∆1

xh`(T ) + h`
x(x̄(T )) ·∆x(T ) +

∫ T

0
∆0

xuf `(t)dt
]

= lE
[
∆1

xh`(T ) +
∫ T

0
∆1

xuH`(t)dt
]
,

proving the first equality in (3.13).

Next, we let {(P `(·), Q`(·)), 1 ≤ ` ≤ N} be the unique adapted solution of (3.3).
Denote the drift term in (3.3) by R`(t). By Ito’s formula and equations (3.15), (3.3),
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we have (with t suppressed)

(3.18)

lE
[
∆x(T )T h`

xx(x̄(T ))∆x(T )
]

= lE
[
∆x(T )T P `(T )∆x(T )

]

= lE
∫ T

0

{
(∆x)T R`∆x + 2(∆x)T P `(∆0

xub)

+2
d∑

i=1

(∆x)T (Q`
i)(∆

0
xuσi) +

d∑

i=1

(∆0
xuσi)T P `(∆0

xuσi)
}

dt

= lE
∫ T

0

{
(∆x)T R`∆x + 2(∆x)T P `(bx∆x + ∆1

xub)

+2
d∑

i=1

(∆x)T (Q`
i)(σ

i
x∆x + ∆1

xuσi) +
d∑

i=1

(∆0
xuσi)T P `∆0

xuσi
}

dt

= lE
∫ T

0

{
(∆x)T

[
R` + P `bx + (bx)T P ` +

d∑

i=1

(
Q`

iσ
i
x + (σi

x)T Q`
i

)]
∆x

+2(∆x)T
[
P `∆1

xub +
d∑

i=1

Q`
i∆

1
xuσi

]
+

d∑

i=1

(∆0
xuσi)T P `∆0

xuσi
}

dt

= lE
∫ T

0

{
− (∆x)T

[
H`

xx +
d∑

i=1

(σi
x)T P `σi

x

]
∆x

+2(∆x)T
[
P `∆1

xub +
d∑

i=1

Q`
i∆

1
xuσi

]
+

d∑

i=1

(∆0
xuσi)T P `∆0

xuσi
}

dt.

Hence,
(3.19)

J `(uε(·))− J `(ū(·)) = lE
[
∆1

xh`(T ) +
∫ T

0
∆1

xuH`(t)dt
]

= lE
{

∆2
xh`(T ) +

1
2

∆x(T )T h`
xx(x̄(T ))∆x(T )

+
∫ T

0

[
∆2

xuH`(t) +
1
2

∆x(t)T H`
xx(t)∆x(t)

]
dt

}

= lE
{

∆2
xh`(T ) +

∫ T

0

[
∆2

xuH`(t) + ∆x(t)T
(
P `(t)∆1

xub(t) +
d∑

i=1

Q`
i(t)∆

1
xuσi(t)

)

+
1
2

d∑

i=1

(
∆0

xuσi(t)T P `(t)∆0
xuσi(t)−∆x(t)T σi

x(t)T P `(t)σi
x(t)∆x(t)

]
dt

}
.

This proves the second equality in (3.13).
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4. A Variational Formula for the Performance Functional Vector

In this section, we will obtain a directional derivative for J(·) at a given admissible
control process ū(·) ∈ Uβ[0, T ] in any given “control process direction”. We will make
this clear shortly. Since U is not necessarily convex, one has to consider spike variations
of ū(·). Let

(4.1) Gε
∆=

{
G ⊆ [0, T ]

∣∣∣ |G| = εT
}

,

where |G| stands for the Lebesgue measure of G. Let v(·) ∈ Uβ[0, T ]. Let Gε ∈ Gε for
ε ∈ (0, 1). Consider the variation

(4.2) uε(t)
∆=

{
v(t), t ∈ Gε,

ū(t), otherwise.

Let x̄(·) and xε(·) be the state processes with x̄(0) = xε(0) ∈ lRn corresponding to
the controls ū(·) and uε(·). Let {(p`(·), q`(·)), 1 ≤ ` ≤ N} and {(P `, Q`), 1 ≤ ` ≤ N}
be the first order and second order adjoint processes associated with ū(·), determined
by (3.2) and (3.3), respectively. Define for (t, u) ∈ [0, T ]× U ,

(4.3)





H`(t, u) = ∆uH`(t, u) + 1
2

∑d
i=1 ∆uσi(t, u)T P `(t)∆uσi(t, u),

∆uH`(t, u) = H`(t, x̄(t), u, p`(t), q`(t))−H`(t, x̄(t), ū(t), p`(t), q`(t)),
∆uσi(t, u) = σi(t, x̄(t), u)− σi(t, x̄(t), ū(t)).

Compare the notations here with those in (3.11) and (3.12).

Theorem 4.1. Let (S1)–(S2) hold and β > 3. Let (x̄(·), ū(·)) ∈ Lβ
F (Ω, C([0, T ], lRn))×

Uβ [0, T ] and v(·) ∈ Uβ [0, T ] be given above. Then there exists a family {Gε ∈ Gε} for
ε ∈ (0, 1) such that the variation uε(·) defined in (4.2) satisfies

(4.4)

d
dεJ

`(uε(·))|ε=0 = lim
ε→0+

1
ε
lE

∫

Gε

H`(t, v(t))

= lE
∫ T

0
H`(t, v(t))dt.

Recall that under (S1)–(S2), if U is convex, and all the maps involved are also
differentiable in u, then by usual convex perturbation, one can show that the map
u(·) 7→ J `(u(·)) is Gâteaux differentiable, and the directional derivative in the direction
of v(·) is linear in v(·); see [2] and [4]. Now by making spike perturbation, which is
applicable for general U , we obtain the above “directional derivative” which is not
linear in the “direction” v(·). Hence, the above “directional derivative” is significantly
different from Gâteaux directional derivative.
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A similar result was proved in [12] under the assumption that

(4.5) sup
0≤t≤T

lE|ū(t)|k < ∞, ∀k ≥ 1.

Ideally, one should be able to prove (4.4) for ū(·) ∈ U2[0, T ] because the optimal control
is well-posed in this space.

The proof of Theorem 4.1 is divided into two parts. In Part I, we construct Gε ∈ Gε

that satisfy the second equality in (4.4). Then in Part II, we show that the resulting
spike variation uε(·) satisfies the first equality in (4.4) as well.

For Part I of the proof, we need the following lemma.

Lemma 4.1. Let αi, βi ∈ [1,∞), `i ≥ 1, i = 1, 2, · · · , k, and ε ∈ (0, 1). Then for any

ψi(·) ∈ Lβi

F (Ω; Lαi(0, T ; lR`i)), i = 1, 2, · · · , k,

(4.6) inf
G∈Gε

max
1≤i≤k

lE
∣∣∣
∫ T

0

(
1− IG(t)

ε

)
ψi(t)dt

∣∣∣
βi

= 0,

where IG(·) is the characteristic function of G.

The proof of the above result is essentially the same as a result found in [9]. For
readers’ convenience, we present a proof here.

Proof of Lemma 4.1. Since ψi(·) ∈ Lβi

F (Ω; Lαi(0, T ; lR`i)), for δ = εβi+1, there exists a
process ψδ

i (·) of form

(4.7) ψδ
i (t) =

n∑

j=0

ξj
i I[tj ,tj+1](t), 1 ≤ i ≤ k,

with 0 = t0 < t1 < · · · < tn+1 = T , ξi
j being Ftj -measurable, such that

(4.8)
k∑

i=1

lE
( ∫ T

0
|ψi(t)− ψδ

i (t)|αidt
) βi

αi < δ.

Note that we can always choose the partition {tj}0≤j≤n+1 independent of i = 1, · · · , k.
Now we let

(4.9) G =
n⋃

j=0

[tj , tj + ε(tj+1 − tj)].

Then |G| = εT . Thus, G ∈ Gε, and

(4.10)
∫ T

0

(
1− IG(t)

ε

)
ψδ

i (t)dt =
n∑

j=1

ξj
i

[
(tj+1 − tj)− ε(tj+1 − tj)

ε

]
= 0, a.s.
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Hence, for each 1 ≤ i ≤ k,

(4.11)

lE
∣∣∣
∫ T

0

(
1− IG(t)

ε

)
ψi(t)dt

∣∣∣
βi

= lE
∣∣∣
∫ T

0

(
1− IG(t)

ε

)
[ψi(t)− ψδ

i (t)]dt
∣∣∣
βi

≤
(
1 +

1
ε

)βi

T
(αi−1)βi

αi lE
( ∫ T

0
|ψi(t)− ψδ

i (t)|αidt
) βi

αi

<
(
1 + 1

ε

)βi

T
(αi−1)βi

αi δ = (1 + ε)βiT
(αi−1)βi

αi ε.

By letting ε → 0+, we obtain (4.6).

Proof of Theorem 4.1 (Part I). In this part we construct Gε ∈ Gε for ε ∈ (0, 1) that
satisfies the second equality of (4.4). Denote by ψ0(·) and η(·) the following processes.

(4.12)

ψ0(t) = 2ρ(t) + 2|x̄(t)|+ |ū(t)|+ |v(t)|,

η(t) = 1 +
N∑

`=1

(
|p`(t)|+ |q`(t)|+ |P `(t)|+ |Q`(t)|

)
,

where ρ appears in assumption (S2). We claim

(4.13) ψ0(·), η(·),∆uσi(·, v(·)) ∈ Lβ
F (Ω; L2(0, T ; lR)),

H(·, v(·)) ∈ L1
F (Ω; L1(0, T ; lR)).

Indeed, by (2.3) or (2.11), we know that ||x̄(·)||∞,β ≤ C. So Proposition 3.1 and
(4.12) imply that ψ0(·), η(·) ∈ Lβ

F (Ω; L2(0, T ; lR)). By assumption (S2), for ϕ = b and
σ,

(4.14)
|∆uϕ(t, v(t))| = |ϕ(t, x̄(t), v(t))− ϕ(t, x̄(t), ū(t))| ≤ ψ0(t),
|∆uH`(t, v(t))| ≤ L(ψ0(t) + |p`(t)|+ |q`(t)|)ψ0(t).

It follows that

(4.15)
|H`(t, v(t))| ≤ C(ψ0(t)2 + |η(t)|2) +

1
2

d∑

i=1

|∆uσi(t, v(t))|2|P `(t)|

≤ C
[
ψ0(t)2 + η(t)2 + |P `(t)|ψ0(t)2

]
.

Since β > 3, by (3.6) in Proposition 3.1 and the fact ψ0(·) ∈ Lβ
F (Ω; L2(0, T ; lR)), we

obtain

(4.16)
lE

∫ T

0
|ψ0(t)|2|P `(t)|dt ≤ lE sup

t∈[0,T ]
|P `(t)|

∫ T

0
|ψ0(t)|2dt

≤
[
lE supt∈[0,T ] |P `(t)|β

] 1
β
[
lE

( ∫ T

0
|ψ0(t)|2dt

)β
2
] 2

β
< ∞.
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This, combined with (4.15), implies that H(·, v(·)) ∈ L1
F (Ω; L1(0, T ; lR)).

By Lemma 4.1 (or its proof) applied to H`(·, v(·)) and ψ0(·), we obtain the existence
of Gε ∈ Gε for ε ∈ (0, 1) such that

(4.17) lE
∫

Gε

H`(t, v(t))dt = ε

∫ T

0
H`(t, v(t))dt + o(ε),

(4.18) lE
( ∫

Gε

ψ0(t)2dt
)β

2 ≤ Cε
β
2 ,

where C = lE
( ∫ T

0
ψ0(t)2dt

)β
2 + 1. Clearly, (4.17) implies the second equality of (4.4)

for Gε.

Now we prepare to go Part II of the proof of Theorem 4.1. Let ψ0 and η be defined
in (4.12). For ε > 0, define

ψε(t) = 2ρ(t) + |x̄(t)|+ |xε(t)|+ |ū(t)|+ |uε(t)|.
We will see that ψε(·) appears many times in the proof of Theorem 4.1, Part II. We
need the following technical lemma.

Lemma 4.2. Let the assumptions of Theorem 4.1 hold. Choose Gε to satisfy (4.17) and
(4.18), and let Iε(t) be the characteristic function of Gε. Let xε(·) be the state process
with xε(0) = x̄(0) corresponding to uε(·) defined in (4.2). Let ∆x(·) = xε(·) − x̄(·).
Then for α ∈ (0, β] and γ > 0,

(4.19) lE
[

sup
t∈[0,T ]

|∆x(t)|α
]
≤ Cε

α
2 .

(4.20) lE
[

sup
t∈[0,T ]

ω̃(|∆x(t)|)γ
]

= o(1).

Moreover, for λ = 0, 1 and θ1, θ2, θ3, θ4 with

(4.21) 0 ≤ θ1, θ2, θ3, θ4; θ1, θ2, θ1 + θ2 ≤ 2,
θ1θ4, θ2θ4, θ3θ4, (θ1 + θ2 + θ3)θ4 ≤ β,

the following holds.

(4.22) lE
( ∫ T

0
ψε(t)θ1η(t)θ2 |∆x(t)|θ3Iλ

ε (t)dt
)θ4

= o(1)λθ2θ4ε

[
λ

(
1− θ2

2

)
+

θ3
2

]
θ4

,

where o(1)λθ2θ4 = o(1) if λθ2θ4 > 0, and by convention, o(1)0 = 1.
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Proof. By (4.18), ||ψ0Iε||2,β ≤ Cε
1
2 . Then by (2.11) with ∆x(0) = 0 and u(·) = uε(·),

we have

||∆x(·)||∞,β ≤ C||(2|x̄|+ 2ρ + |ū|+ |v|)Iε||2,β ≤ C||ψ0Iε||2,β ≤ Cε
1
2 .

This shows (4.19) for α = β. For α ∈ (0, β], we have that

lE
[

sup
t∈[0,T ]

|∆x(t)|α
]
≤

[
lE

(
sup

t∈[0,T ]
|∆x(t)|β

)]α
β ≤ Cε

α
2 .

For (4.20), we may assume that γ = 1 since ω̃ (·)γ is just another modulus of conti-
nuity. For each δ > 0, there exists a constant Kδ > 0 such that ω̃ (r) ≤ δ + rβKδ for
all r ≥ 0. It follows that

lE sup
0≤t≤T

ω̃ (|∆x (t) |) ≤ lE sup
0≤t≤T

{
δ + Kδ|∆x (t) |β

}
≤ δ + CKδε

β
2 .

Choosing δ small enough and then letting ε be sufficiently small, we obtain (4.20).

Now we prove (4.22). Note that if θ1, θ2, θ3, θ4 satisfy all of the strict inequalities in
(4.21), then by Hölder’s inequality we have (with t suppressed)
(4.23)

lE
( ∫ T

0
ψθ1

ε ηθ2 |∆x|θ3Iλ
ε dt

)θ4 ≤ lE
(

sup
t∈[0,T ]

|∆x|θ3

∫ T

0
ψθ1

ε ηθ2Iλ
ε dt

)θ4

≤ lE
[(

supt∈[0,T ] |∆x|θ3θ4

)( ∫ T

0
ψ2

εI
λ
ε dt

) θ1θ4
2

( ∫ T

0
η2Iλ

ε dt
) θ2θ4

2
( ∫ T

0
Iλ
ε dt

) 2−θ1−θ2
2

θ4
]

≤ ε
λ(2−θ1−θ2)θ4

2 ||∆x||θ3θ4
∞,β ||ψεI

λ
ε ||θ1θ4

2,β ||ηIλ
ε ||θ2θ4

2,β .

However, with the convention (·)0 = 1, (4.23) holds for all θ1, θ2, θ3, θ4 in (4.21). Now
we estimate the terms in (4.23). By (2.11) and (4.19), ||xε||∞,β ≤ C. By (4.18) again,
||ψ0Iε||2,β ≤ Cε

1
2 . Thus

(4.24)

||ψεIε||2,β = ||(2ρ + |x̄|+ |xε|+ |ū|+ |v|)Iε||2,β

≤ |||xεIε|||2,β + ||ψ0Iε||2,β

≤ ||xε||∞,β |Gε| 12 + Cε
1
2 ≤ C1ε

1
2 ,

||ηIε||2,β = o(1),
||ψε + η||2,β ≤ C.

The inequalities in (4.24) can be combined as, for λ = 0 or 1,

(4.25) ||ψεI
λ
ε ||2,β ≤ Cε

λ
2 ; ||ηIλ

ε ||2,β = o(1)λ.

Substituting (4.25) into (4.23), we obtain (4.22):

(4.26)
lE

( ∫ T

0
ψθ1

ε ηθ2 |∆x|θ3Iλ
ε dt

)θ4 ≤ Cε
λ

(
1− θ1+θ2

2

)
θ4+

θ3
2

θ4+λ
θ1
2

θ4
o(1)λθ2θ4

= o(1)λθ2θ4ε

[
λ

(
1− θ2

2

)
+

θ3
2

]
θ4

.
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We are ready for Part II of the proof of Theorem 4.1.

Proof of Theorem 4.1 (Part II). For convenience, we rewrite (3.13) below
(4.27)

J `(uε(·))− J `(ū(·))

= lE
{

∆2
xh`(T ) +

∫ T

0

[
∆2

xuH`(t) + ∆x(t)T
(
P `(t)∆1

xub(t) +
d∑

i=1

Q`
i(t)∆

1
xuσi(t)

)

+
1
2

d∑

i=1

(
∆0

xuσi(t)T P `(t)∆0
xuσi(t)−∆x(t)T σi

x(t)T P `(t)σi
x(t)∆x(t)

)]
dt

}
.

We list the following claims:

(4.28) lE
[
∆2

xh`(T )
]

= o(ε).

(4.29) lE
∫ T

0
∆2

xuH`(t)dt = lE
∫ T

0
∆uH`(t, uε(t))dt + o(ε).

(4.30) lE
∫ T

0
∆x(t)T

[
P `(t)∆1

xub(t) +
d∑

i=1

Q`
i(t)∆

1
xuσi(t)

]
dt = o(ε).

(4.31)
lE

∫ T

0

(
∆0

xuσi(t)T P `(t)∆0
xuσi(t)−∆x(t)T σi

x(t)T P `(t)σi
x(t)∆x(t)

)
dt

= lE
∫ T

0
∆uσi(t, uε(t))T P `(t)∆uσi(t, uε(t))dt + o(ε).

If the above are all proved, then (4.27) becomes

(4.32)

J `(uε(·))− J(ū(·)) = lE
∫ T

0

[
∆uH`(t, uε(t))

+1
2

∑d
i=1 ∆uσi(t, uε(t))P `(t)∆uσi(t, uε(t))

]
dt + o(ε)

= lE
∫ T

0
H`(t, uε(t))dt + o(ε)

= lE
∫

Gε

H`(t, v(t))dt + o(ε).

Here we used the fact that H`(t, uε(t)) = H`(t, v(t))Iε(t). This implies the first equality
in (4.4).

We now prove (4.28)–(4.31).
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Proof of (4.28): We note that
(4.33)

∆2
xh`(T ) = h`(xε(T ))− h`(x̄(T ))− h`

x(x̄(T ))T ∆x(T )− 1
2
∆x(T )T h`

xx(x̄(T ))∆x(T )

=
∫ 1

0

[
h`

x(x̄(T ) + λ∆x(T ))− h`
x(x̄(T ))

]T
∆x(T )dλ− 1

2
∆x(T )T h`

xx(x̄(T ))∆x(T )

=
∫ 1

0

∫ 1

0
∆x(T )T h`

xx(x̄(T ) + λµ∆x(T ))∆x(T )dµdλ− 1
2
∆x(T )T h`

xx(x̄(T ))∆x(T )

= ∆x(T )T
[ ∫ 1

0
λ
(
h`

xx(λx̄(T ) + (1− λ)xε(T ))− h`
xx(x̄(T ))

)
dλ

]
∆x(T ).

Hence, by assumption (S2), (4.19), and (4.20) with γ = β
β−2 to obtain

(4.34)

|lE∆2
xh`(T )|

≤ lE(ω̃(|∆x(T ))|∆x(T )|2) ≤
{

lE
[
ω̃(|∆x(T )|

] β
β−2

}β−2
β

[
lE|∆x(T )|β

] 2
β

≤ Cε
{

lE
[
ω̃(|∆x(T )|

] β
β−2

}β−2
β = o(ε),

which proves (4.28).

Proof of (4.29): Recalling the definitions (3.12) and (4.3) of ∆2
xuH(t) and ∆uH(t, uε(t)),

we have (suppressing t and (p`, q`) when it is clear)

(4.35)

|∆2
xuH`(t)−∆uH`(t, uε(t))|

= |H`(xε, uε)−H`(x̄, ū)−H`
x(x̄, ū)T ∆x− 1

2
(∆x)T H`

xx(x̄, ū)∆x

−H`(x̄, uε) + H`(x̄, ū)|
=

∣∣∣
[ ∫ 1

0
H`

x(x̄ + λ∆x, uε)dλ−H`
x(x̄, ū)

]T
∆x− 1

2
(∆x)T H`

xx(x̄, ū)∆x
∣∣∣

=
∣∣∣
[ ∫ 1

0

(
H`

x(x̄ + λ∆x, uε)−H`
x(x̄ + λ∆x, ū)

)
dλ

]T
∆x

+
[ ∫ 1

0

(
H`

x(x̄ + λ∆x, ū)−H`
x(x̄, ū)

)
dλ

]T
∆x− 1

2
(∆x)T H`

xx(x̄, ū)∆x
∣∣∣

=
∣∣∣
[ ∫ 1

0

(
H`

x(x̄ + λ∆x, uε)−H`
x(x̄ + λ∆x, ū)

)
dλ

]T
∆x

+(∆x)T
[ ∫ 1

0
λ
(
H`

xx(λx̄ + (1− λ)xε, ū)−H`
xx(x̄, ū)

)
dλ

]T
∆x

∣∣∣.

Since

(4.36)

∣∣∣H`
xx(t, λx̄(t) + (1− λ)xε(t), ū(t), p`(t), q`(t))−H`

xx(t, x̄(t), ū(t), p`(t), q`(t))
∣∣∣

≤
[
1 + |p`(t)|+ |q`(t)|

]
ω̃(|∆x(t)|) ≤ η(t)ω̃(|∆x(t)|),
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by (4.20) with γ = β
β−3 and (4.22) with (θ1, θ2, θ3, θ4, λ) = (0, 1, 2, β

3 , 0), we have (note
β > 3)

(4.37)

lE
∫ T

0

∣∣∣(∆x)T
[ ∫ 1

0
λ
(
H`

xx(λx̄ + (1− λ)xε, ū)−H`
xx(x̄, ū)

)
dλ

]T
∆x

∣∣∣dt

≤ lE
∫ T

0
η(t)ω̃(|∆x(t)|)|∆x(t)|2dt ≤ lE

[
sup

t∈[0,T ]
ω̃(|∆x(t)|)

∫ T

0
η(t)|∆x(t)|2dt

]

≤ lE
[

sup
t∈[0,T ]

ω̃(|∆x(t)|) β
β−3

]β−3
β

(
lE

[ ∫ T

0
η(t)|∆x(t)|2dt

]β
3
) 3

β

= o(1)
(
ε

β
3

) 3
β = o(ε).

Also, by (4.22) with (θ1, θ2, θ3, θ4, λ) = (1, 0, 1, 1, 1) and (0, 1, 1, 1, 1), respectively,

(4.38)
lE

∫ T

0

∣∣∣
[ ∫ 1

0

(
H`

x(x̄ + λ∆x, uε)−H`
x(x̄ + λ∆x, ū)

)
dλ

]T
∆x

∣∣∣dt

≤ ClE
∫ T

0
[ψε(t) + η(t)]|∆x(t)|Iε(t)dt ≤ C

[
ε

3
2 + o(1)ε] = o(ε).

Combining (4.35)-(4.38), we obtain (4.29).

Proof of (4.30): In fact, we have (suppressing t)

(4.39)

|∆1
xub(t)| ≡ |b(xε, uε)− b(x̄, ū)− bx(x̄, ū)∆x|

= |b(xε, uε)− b(xε, ū) + [b(xε, ū)− b(x̄, ū)− bx(x̄, ū)∆x]|
=

∣∣∣
[
b(xε, uε)− b(xε, ū)

]
Iε +

[ ∫ 1

0

(
bx(x̄ + λ∆x, ū)− bx(x̄, ū)

)
dλ

]T
∆x

∣∣∣

≤ C
[
ψε(t)Iε(t) + |∆x(t)|2

]
.

Similarly,

(4.40) |∆1
xuσi(t)| ≤ C

[
ψε(t)Iε(t) + |∆x(t)|2

]
.

Hence, by (4.22) with (θ1, θ2, θ3, θ4, λ) = (1, 1, 1, 1, 1) and (0, 1, 3, 1, 0), respectively, we
have

(4.41)

∣∣∣lE
∫ T

0
∆x(t)T

[
P `(t)∆1

xub(t) +
d∑

i=1

Q`
i(t)∆

1
xuσi(t)

]
dt

∣∣∣

≤ C
[
lE

∫ T

0
ψε(t)η(t)|∆x(t)|Iε(t)dt + lE

∫ T

0
η(t)|∆x(t)|3dt

]

= C[o(1)ε + ε
3
2 ] = o(ε),

proving (4.30).
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Proof of (4.31): We let

(4.42)

Ri(t) ∆=∆0
xuσi(t)−∆uσi(t, uε(t))Iε(t)− σi

x(t)∆x(t)
= σi(xε, uε)− σi(x̄, ū)− σi(x̄, uε) + σi(x̄, ū)− σi

x(x̄, ū)∆x

=
∫ 1

0

[
σi

x(x̄ + λ∆x, uε)− σi
x(x̄, ū)

]T
∆xdλ.

By assumption (S2), |Ri(t)| ≤ 2L|∆x(t)|. Therefore we have (with arguments sup-
pressed)

(4.43)

lE
∫ T

0

∣∣∣(∆0
xuσ)T P `∆0

xuσi − (σi
x∆x)T P `σi

x∆x− (∆uσi)T P `(∆uσi)Iε

∣∣∣dt

≤ lE
∫ T

0

∣∣∣(∆uσiIε + σi
x∆x + Ri)T P `(∆uσiIε + σi

x∆x + Ri)

−(σi
x∆x)T P `σi

x∆x− (∆uσi)T P `(∆uσi)Iε

∣∣∣dt

≤ lE
∫ T

0
|P `|

[
2|∆uσi|

(
|σi

x∆x|+ |Ri|
)
Iε +

(
2|σi

x∆x|+ |Ri|
)
|Ri|

]
dt

≤ lE
∫ T

0
η
[
6Lψε|∆x|Iε + 4L|∆x||Ri|

]
dt.

To finish the proof, another bound for |Ri(t)| is needed. Rewrite Ri(t) as follows.
(4.44)

Ri(t) =
∫ 1

0

[
σi

x(x̄ + λ∆x, uε)− σi
x(x̄ + λ∆x, ū) + σi

x(x̄ + λ∆x, ū)− σi
x(x̄, ū)

]T
∆xdλ.

For a fixed τ ∈ (0,min{β − 3, 1}), by assumption (S2), we have

(4.45) |σi
x(x̄ + λ∆x, ū)− σi

x(x̄, ū)| ≤ min{2L|∆x(t)|, L|∆x(t)|2} ≤ 2L|∆x(t)|1+τ .

Thus, by (4.44) and (4.45), we obtain another bound for Ri(t):

(4.46) |Ri(t)| ≤ 2L
(
|∆x(t)|Iε(t) + |∆x(t)|1+τ

)
.

Substituting (4.46) into (4.43), and using (4.22) with (θ1, θ2, θ3, θ4, λ) = (1, 1, 1, 1, 1),
(0, 1, 2, 1, 1) and (0, 1, 2 + τ, 1, 0), respectively, we obtain

(4.47)

lE
∫ T

0

∣∣∣(∆0
xuσ)T P `∆0

xuσi − (σi
x∆x)T P `σi

x∆x− (∆uσi)T P `(∆uσi)Iε

∣∣∣dt

≤ ClE
( ∫ T

0

[
ψε(t)η(t)|∆x(t)|Iε(t) + η(t)|∆x(t)|2Iε(t) + η(t)|∆x(t)|2+τ

]
dt

)

≤ C[o(1)ε + ε
3
2 + ε

2+τ
2 ] = o(ε).

This proves (4.31).
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5. Pontryagin Type Extreme Principles

In this section we apply the directional derivative formula established in the previous
section to optimal controls and equilibria of differential games.

We first look at the case N = 1, i.e., the classical stochastic optimal control problem
which can be stated as follows.

Problem (C). Find ū(·) ∈ Uβ [0, T ] such that

(5.1) J(ū(·)) = min
u(·)∈Uβ [0,T ]

J(u(·)).

Any ū(·) ∈ Uβ[0, T ] satisfying the above is called an optimal control of Problem (C),
the corresponding state process x̄(·) is called an optimal state process, and (x̄(·), ū(·)) is
called an optimal pair. The following result is referred to as Pontryagin type maximum
principle, which is a set of first order necessary conditions for optimal controls. For
optimal controls satisfying (4.5), the maximum principle is proved in [12]. Assuming
more restrictive growth conditions for f and h, the maximum principle is proved in
[17]. See [3], [5], [7], [10], [13], [14], and [18] for related works.

Theorem 5.1. Let (S1)–(S2) hold with N = 1. Suppose ū(·) ∈ Uβ[0, T ] is an optimal
control with β > 3. Then there exist (p(·), q(·)) and (P (·), Q(·)) satisfying (3.2) and
(3.3) (with N = 1) such that
(5.2)

H(t, v) ∆=H(t, x̄(t), v, p(t), q(t))−H(t, x̄(t), ū(t), p(t), q(t))

+
1
2

d∑

i=1

[
σi(t, x̄(t), v)− σi(t, x̄(t), ū(t))

]T
P (t)

[
σi(t, x̄(t), v)− σi(t, x̄(t), ū(t))

]
≥ 0,

∀v ∈ U, a.e.t ∈ [0, T ], lP-a.s.,

that is,

(5.3) min
v∈U

H(t, v) = H(t, ū(t)) = 0, a.e. t ∈ [0, T ], lP-a.s.

Proof. Let us suppress (t, x̄(t), p(t), q(t)). For any v(·) ∈ Uβ[0, T ], by Theorem 4.1, we
have
(5.4)

0 ≤ lE
∫ T

0

{
H(v(t))−H(ū(t))+

1
2

d∑

i=1

[
σi(v(t))−σi(ū(t))

]T
P (t)

[
σi(v(t))−σi(ū(t))

]}
dt.

Now if (5.2) fails, then there would be a v0 ∈ U such that for some δ > 0, the set

K
∆=

{
(t, ω) ∈ [0, T ]× Ω

∣∣∣ H(t, v0, ω) ≤ −δ
}
⊆ [0, T ]× Ω,
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has the property that ∫ T

0
lP(Kt)dt > 0,

where
Kt =

{
ω ∈ Ω

∣∣∣ (t, ω) ∈ K
}
∈ Ft, t ∈ [0, T ].

Now we let

v(t, ω) =

{
v0, (t, ω) ∈ K,

ū(t, ω), otherwise.

Clearly, v(·) ∈ Uβ [0, T ], and with this v(·), we have a violation of (5.4).

Putting the corresponding state equation, the first and second adjoint equations
together, we obtain the following optimality system for an optimal control:
(5.5)



dx̄(t) = b(t, x̄(t), ū(t))dt + σ(t, x̄(t), ū(t))dW (t),
dp(t) = −Hx(t, x̄(t), ū(t), p(t), q(t))dt + q(t)dW (t),

dP (t) = −
{

Hxx(t) + P (t)bx(t) + bx(t)T P (t)

+
d∑

i=1

[
σi

x(t)T P (t)σi
x(t) + Qi(t)σi

x(t) + σi
x(t)T Qi(t)

]}
dt +

d∑

i=1

Qi(t)dWi(t),

x(0) = x0, p(T ) = hx(x̄(T )), P (T ) = hxx(x̄(T )),
min
v∈U

H(t, v) = 0, t ∈ [0, T ], a.s.

Note that the above is a coupled forward-backward stochastic differential equation
(FBSDE, for short), with the coupling presented in the last minimum condition.

Next, we consider the case N ≥ 2. This is an N -person stochastic differential game.
There are a lot of situations in the area that one can discuss; see [1] for a general
exposition. Here, we only consider the so-called non-cooperative differential games,
namely, the `-th player in the game would like to minimize his/her own cost functional
J `(u(·), regardless of other players’ cost functionals. To make it precise, let

u(·) = (u1(·), · · · , uN (·)),
with

u`(·) ∈ Uβ`
` [0, T ] ∆=Lβ`

F (Ω; L2(0, T ;U`), U` ⊆ lRm` , 1 ≤ ` ≤ N.

For notational convenience, we introduce

(uc
`, v) ∆=(u1, · · · , u`−1, v, u`+1, · · · , uN ), 1 ≤ ` ≤ N.

Then Player ` selects u`(·) ∈ Uβ`
` [0, T ] to minimize the functional

v(·) 7→ J `(uc
`(·), v(·)) ≡ J `(u1(·), · · · , u`−1(·), v(·), u`+1(·), · · · , uN (·)).
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Obviously, J `(u(·)) not only depends on u`(·), but also depends on uk(·), k 6= `. Hence,
the optimal control/strategy of Player ` depends on the controls/stragies of other play-
ers. Therefore, we need to introduce the following notion.

Definition 5.1. An N -tuple ū(·) ≡ (ū1(·), · · · , ūN (·)) ∈ ∏N
`=1 Uβ`

` [0, T ] is called an
open-loop Nash equilibrium of the game if the following holds:

(5.6) J `(ū(·)) ≤ J `(ūc
`(·), v(·)), ∀v(·) ∈ Uβ`

` [0, T ], 1 ≤ ` ≤ N.

Similar to Theorem 5.1, we have the following Pontryagin type maximum principle
for Nash equilibria of the N -person stochastic differential game.

Theorem 5.2. Let (S1)–(S2) hold. Suppose ū(·) ≡ (ū1(·), · · · , ūN (·)) ∈ ∏N
`=1 Uβ`

` [0, T ]
is a Nash equilibrium of the game with each β` > 3. Then there exist {(p`(·), q`(·)), 1 ≤
` ≤ N} and {(P `(·), Q`(·)), 1 ≤ ` ≤ N} satisfying (3.2) and (3.3) such that

(5.7)

H`(t, v) ∆=H`(t, x̄(t), ūc
`(t), v, p`(t), q`(t))−H(t, x̄(t), ū(t), p(t), q(t))

+
1
2

d∑

i=1

[
σi(t, x̄(t), ūc

`(t), v)− σi(t, x̄(t), ū(t))
]T

P `(t)
[
σi(t, x̄(t), ūc

`(t), v)− σi(t, x̄(t), ū(t))
]
≥ 0,

∀v ∈ U`, a.e.t ∈ [0, T ], lP-a.s., 1 ≤ ` ≤ N,

that is,

(5.8) min
v∈U`

H`(t, ūc
`(t), v) = H`(t, ū(t)) = 0, a.e.t ∈ [0, T ], lP-a.s.

The proof is very similar to that of Theorem 5.1, because for any 1 ≤ ` ≤ N , when
ūk(·) (k 6= `) are given, ū`(·) is an optimal control problem with the state equation
(1.1) in which u(·) = (ūc

`(·), v(·)) and cost functional J `(ūc
`(·), v(·)). Hence, Theorem

5.1 applies.

We point out that condition (5.7) gives couplings among (ū`(·), p`(·), q`(·), P `(·)) for
different 1 ≤ ` ≤ N . Similar to the case N = 1, we may also write down the optimality
system for (x̄(·), ū(·)), {(p`(·), q`(·)), 1 ≤ ` ≤ N}, and {(P `(·), Q`(·)), 1 ≤ ` ≤ N}.
Due to the minimum condition (5.8), it is not hard for us to see that the optimality
system is not decoupled (with respect to 1 ≤ ` ≤ N). In fact, if for given for t ∈ [0, T ],
(ū1(t), · · · , ūN (t)) is a solution of (5.8), then we expect that
(5.9)
ū`(t) = Φ`(t, x̄(t), p1(t) · · · , pN (t), q1(t), · · · , qN (t), P 1(t), · · · , PN (t)), ` = 1, · · · , N.

Therefore, plugging the above into (1.1), (3.2), and (3.3), we obtain a couple system of
FBSDEs. Solving that system will lead to a candidate for the Nash equilibria of the
game. We prefer to omit the details here.
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Now let us look at an interesting special case: the two-person zero-sum differential
games. Thus, N = 2 and (1.3) holds. In this case, as we know that if (ū1(·), ū2(·)) ∈
Uβ1 [0, T ]× Uβ2 [0, T ] is a Nash equilibrium, then

(5.10)

{
J1(ū1(·), ū2(·)) ≤ J1(u1(·), ū2(·)), ∀u1(·) ∈ Uβ1

1 [0, T ],

J2(ū1(·), ū2(·)) ≤ J2(ū1(·), u2(·)), ∀u2(·) ∈ Uβ2
2 [0, T ].

Due to (1.3), we have (denoting J1(u(·)) = J̄(u(·)))

(5.11)
J̄(ū1(·), u2(·)) ≤ J̄(ū1(·), ū2(·)) ≤ J̄(u1(·), ū2(·)),
∀(u1(·), u2(·)) ∈ Uβ1

1 [0, T ]× Uβ2
2 [0, T ].

Therefore, (ū1(·), ū2(·)) is referred to as a saddle point of the game. For such a case,
we have the following result.

Theorem 5.3. Suppose (ū1, ū2(·)) ∈ Uβ1
1 [0, T ]×Uβ2

2 [0, T ] is a saddle point with β1, β2 >
3. Then there exist (p(·), q(·)) and (P (·), Q(·)) satisfying (3.2) and (3.3) (with N = 1)
such that with
(5.12)

H(t, u1, u2)
∆= f(t, x̄(t), u1, u2) + p(t) · b(t, x̄(t), u1, u2) +

d∑

i=1

qi(t) · σi(t, x̄(t), u1, u2)

+
1
2

d∑

i=1

[
σi(t, x̄(t), u1, u2)− σi(t, x̄(t), ū(t))

]T
P (t)

[
σi(t, x̄(t), u1, u2)− σi(t, x̄(t), ū(t))

]
,

∀(u1, u2) ∈ U1 × U2, t ∈ [0, T ],

the following holds:

(5.13) H(t, ū1(t), u2) ≤ H(t, ū1(t), ū2(t)) ≤ H(t, u1, ū2(t)),
(u1, u2) ∈ U1 × U2, a.e.t ∈ [0, T ], a.s.

The proof is pretty straightforward. We may refer (5.13) as a minimax condition.

6. Sufficient Conditions for Nash Equilibria

In this section, we use the first order representation in Lemma 3.1 to prove a sufficient
condition for

ū(·) ≡ (ū1(·), · · · , ūN (·)) ∈
N∏

`=1

Uβ`
` [0, T ]

to be a Nash equilibrium of the nonzero-sum game in Theorem 5.2. The proof follow
directly from a generalization of the sufficient condition for optimal control proved in
[17].
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We need the concept of partial subgradient. For a function ϕ defined on a convex
subset D of lRn × lRm, the partial subgradient ∂uϕ of ϕ at (x, u) ∈ D is defined as

(6.1)
∂uϕ(x, u)
=

{
η ∈ lRm|η · y ≤ limr→0+ sup1

r [ϕ(x, u + ry)− ϕ(x, u)] for each y ∈ lRm
}

.

See Lemma 2.3, Chapter 3 in [17] for properties of ∂uϕ. We make the following as-
sumption.

S1*. The control domain U is a convex body in lRm.

S2*. (i) The maps b, σ, f and h satisfy (i) and (ii) in assumption (S2).

(ii) For almost all (t, u, ω) ∈ [0, T ]× lRn × Ω, the map

x 7→ (b(t, x, u, ω), σ(t, x, u, ω), f(t, x, u, ω), h(x, ω))

is continuously differentiable with appropriate growths. More precisely, there exist a
constant L > 0, a process ρ(·) ∈ Lβ

F (Ω; L2(0, T ; lR)) (with β ≥ 1) and a modulus of
continuity ω̃ : [0,∞) → [0, 1] such that ϕ = b, σ and ψ = f, h satisfy

(6.2)
|ϕx(t, x, u)− ϕx(t, x̂, û)| ≤ Lω̃(|x− x̂|+ |u− û|),
|ψx(t, x, u)− ψx(t, x̂, û)|
≤ L

(
ρ(t) + |x|+ |x̂|+ |u|+ |û|

)
ω̃(|x− x̂|+ |u− û|),

for all t ∈ [0, T ], x, x̂ ∈ lRn and u, û ∈ U .

Now we prove

Theorem 6.1. (Sufficient conditions of optimality). Let S1* and S2* hold. Suppose
that ū(·) ∈ L2

F (0, T ;U) with adjoint processes (p(t), q(t)) defined by (3.2) and ū(·)
satisfies, for all t ∈ [0, T ],

(i) h(x) is convex in x and H(t, x, u, p(t), q(t)) is convex in x and u.

(ii) 0 ∈ ∂uH(t, x̄(t), ū(t), p(t), q(t)).

Then ū(t) is an optimal control.

Proof. Let (x̄(t), ū(t)) be an admissible pair with ū(t) in Theorem 6.1 and (p(·), q(·))
being the associated first order adjoint processes. Let (x(t), u(t)) be any admissible
pair.

Note that assumption (S2*) is sufficient for deriving the first order representation in
Lemma 3.1, which can be written as

(6.3)
J(u)− J(ū)

= lE
{

∆xxh(x̄(T )) +
∫ T

0
[H(x, u)−H(x̄, ū)−Hx(x̄, ū) ·∆x]dt

}
,

where we have dropped (t, p(t), q(t)) from notations, and ∆x = x− x̄. For example,

H(x, u)−H(x̄, ū) = H(t, x(t), u(t), p(t), q(t))−H(t, x̄(t), ū(t), p(t), q(t)).
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The convexity of h implies

(6.4) ∆xxh(x̄(T )) = h(x(T ))− h(x̄(T ))− hx(x̄(T )) ·∆x̄(T ) ≥ 0.

Thus, to prove that ū is an optimal control, it suffices to show that for all t ∈ [0, T ],

(6.5) H(x, u)−H(x̄, ū)−Hx(x̄, ū) ·∆x ≥ 0.

The convexity of H(t, ·, ·, p(t), q(t)) implies that the functions

(6.6) g(r) ∆= 1
r [H(x̄ + r∆x, ū + r∆u)−H(x̄, ū)],

g1(r)
∆= 1

r [H(x̄, ū + r∆u)−H(x̄, ū)],

are increasing in r ∈ [0, 1] (for each t). By condition (ii) and assumption (S2*), for a.e.
and a.s. (t, ω) ∈ [0, T ]× Ω, the following hold.

(6.7)

lim
r→0+

g1(r) exists and ≥ 0,

lim
r→0+

(
g(r)− g1(r)

)
= lim

r→0+

1
r

[
H(x̄ + r∆x, ū + r∆u)−H(x̄, ū + r∆u)

]

= lim
r→0+

∫ 1

0
Hx(x̄ + rs∆x, ū + r∆u)∆xds = Hx(x̄, ū) ·∆x,

lim
r→0+

g(r) = Hx(x̄, ū) ·∆x + lim
r→0+

g1(r) ≥ Hx(x̄, ū) ·∆x.

Recall that g(r) is decreasing as r → 0+. Therefore,

H(x, u)−H(x̄, ū) = g(1) ≥ g(r) ≥ lim
r→0+

g(r) ≥ Hx(x̄, ū) ·∆x.

This finishes the proof.

We remark that condition (ii) in Theorem 6.1 can be verified easily in certain cases.
Clearly if ū(t) is a minimum point of H(t, x̄(t), u, p(t), q(t)) for every t, then condition
(ii) holds; see Lemma 2.3 (iii) in Section 3.2 of [17].

On the other hand, if ū(t) is a minimum point of H(t, u) for every t ∈ [0, T ] (this is
the necessary condition in Theorem 5.1), then 0 ∈ ∂uH(t, ū(t)) (see Lemma 2.3 (iii) in
[17], Section 3.2). If, in addition, σ(t, x̄(t), u) is Cα in u with α > 1

2 , then we will have
that 0 ∈ ∂uH(t, x̄(t), u, p(t), q(t)). So condition (ii) also holds.

Now a sufficient condition for the nonzero-sum game in Theorem 5.2 can be easily
derived.

Theorem 6.2. (Sufficient conditions of Nash equilibria). Let S1* and S2* hold. Sup-

pose ū(·) ≡ (ū1(·), · · · , ūN (·)) ∈ ∏N
`=1 Uβ`

` [0, T ] and (p`, q`) are the adjoint processes for
Player `, 1 ≤ ` ≤ N . Assume that

(i) h`(x) is convex in x for 1 ≤ ` ≤ N .

(ii) H`(t, x, v, uc
`, p

`(t), q`(t)) is convex in (x, v) for t ∈ [0, T ].

(iii) 0 ∈ ∂u`
H`(t, x̄(t), ū`, p

`(t), q`(t)).
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Then ū(·) ≡ (ū1(·), · · · , ūN (·)) is a Nash equilibrium point of the nonzero-sum game.

Proof. We apply Theorem 6.1 to J `(ūc
`(·), v(·)) to conclude that v(·) = ū`(·) is an

optimal control of J `(ūc
`(·), v(·)).
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