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Abstract. Here we obtain everywhere regularity of weak solutions of some nonlinear elliptic systems

with borderline growth, including n-harmonic maps between manifolds or map with constant volumes.

Other results in this paper include regularity up to the boundary and a removability theorem for isolated

singularities.

§ 1. Introduction

Let n, m ≥ 2 be integers, p ∈ (1, n] and Ω be a smooth bounded domain Ω ⊂ Rn. As usual, W 1,p(Ω,Rm)

is the set of all functions u ∈ Lp(Ω,Rm) with finite p-energy
∫

Ω
|∇u|p < ∞; it is a Banach space with the

norm ‖u‖W 1,p =
∫

Ω
|u|p + |∇u|p.

Let K be a submanifold of W 1,p(Ω,Rm). A p-harmonic map in K is a critical point in K of the energy

functional
∫

Ω
|∇u|p. Denote by TuK the tangent space of K at u, that is, the set of all φ ∈ W 1,p(Ω,Rm),

where φ = d
dt

∣∣
t=0

ut for a smooth curve ut in K with u0 = u. A p-harmonic map in K thus satisfies

div(|∇u|p−2∇u)⊥TuK.

This relation can often be written as an equation:

(1.1) div(|∇u|p−2∇u) = f(x, u,∇u),

where f is smooth and homogeneous in ∇u of degree p. We now look at two examples.

First, suppose that N is a compact Riemannian manifold, which we may assume is isometrically

embedded into Rm as a submanifold. Let K be the submanifold consisting of all u ∈ W 1,p(Ω,Rm) with

image u(Ω) ⊂ N and with fixed boundary data u|∂Ω. Then p-harmonic maps in K are called p-harmonic

maps from Ω to N , and (1.1) becomes

(1.2) div(|∇u|p−2∇u)− |∇u|p−2A(u)(∇u,∇u) = 0,

where A(u) is the second fundamental form of N . For a derivation, see [SU1] and [HL1]. In particular, when

N = Sm−1, (1.2) reduces to

(1.3) div(|∇u|p−2∇u) + |∇u|pu = 0.
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The second example occurs when m = n + 1 and p = n. In this case, a function u ∈ W 1,n(Ω,Rm)

parametrizes a generalized hypersurface u(Ω) ⊂ Rm. If u ∈ C1(Ω̄,Rm), then the cone generated by u(Ω)

(with vertex 0 ∈ Rm) has a oriented volume

(1.4) V(u) =
1

n+ 1

∫

Ω

u · J(u),

where J(u) = ∂1u ∧ . . . ∧ ∂nu is the wedge product of ∂1u, . . . , ∂nu; it is the vector whose components are

the n× n minors of the Jacobi matrix
(
∂ju

i
)

(n+1)×n. We will see that V(u) can be defined by (1.4) for any

u ∈ W 1,n(Ω,Rm) with bounded u|∂Ω. Let K be the set of all u ∈ W 1,n(Ω,Rm) with prescribed u|∂Ω and

V(u). We call the critical points u ∈ K of
∫

Ω
|∇u|n n-harmonic maps with constant volume. These satisfy

(1.5) div(|∇u|n−2∇u) +H J(u) = 0,

for some constant H.

By a p-harmonic map, we will simply mean a weak solution of (1.1). Here we are concerned with the

regularity of p-harmonic maps, especially n-harmonic maps into spheres or maps with constant volumes.

Theorem 2.6 asserts that if u is a p-harmonic map with the monotonicity property and f(x, u,∇u) is

in the local Hardy space H1
loc(Ω) (a space slightly smaller than L1), then u is partially regular to the extent

that the singular set has 0 Hausdorff measure of dimension n− p. Moreover, we show that n-harmonic maps

are everywhere regular in the interior, continuous up to the boundary of Ω, and have removable isolated

singularities. See Theorems 3.2, 3.6, 4.1 and 5.1.

The regularity of 2-harmonic maps (on a disk) with constant volume and H-surfaces was proved by

Wente [WH], Grüter [G], and others. In this case, any solution of ∆u = H∂1 ∧ ∂2u is analytic [WH, 1969],

in contrast with our optimal C1,α regularity for some α ∈ (0, 1) (see [L]).

Partial regularity of harmonic maps to manifolds has been extensively studied. For minimizers of
∫

Ω
|∇u|p, see the work of Schoen and Uhlenbeck, Hardt and Lin, and Luckhaus [SU1][HL1][LS]. For stationary

2-harmonic maps to spheres, see Evans’ paper [EL]. Theorem 3.2 generalizes Evans’ result to p-harmonic

maps. Very recently, Bethuel [B] proved partial regularity for 2-harmonic maps with monotonicity for an

arbitrary target manifold.

A 2-harmonic map on a surface is regular up to the boundary, see Heléin [HF1,2] and Qing [QJ]. For

earlier results in this case, see [MC], [SR].

Removability of isolated singularities of 2-harmonic maps on a surface was proved by Sacks and

Uhlenbeck [SaU, Thm 3.6], who also applied the result to find harmonic maps in homotopy classes. Theorem

5.1 generalizes this result to arbitrary higher dimensional cases, which can be applied to show the existence

of n-harmonic maps homotopic to given maps.

Our proof of Theorem 2.6 uses a blow-up argument, which leads to an energy growth estimate.

We prove the strong convergence of the blow-up sequence by using Fefferman-Stein’s duality theorem
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H1(Rn)∗ = BMO(Rn) and the assumption that f is in the Hardy space H1. To apply Theorem 2.6 to

(1.3) and (1.5), we verify that f ∈ H1
loc by using a criterion in [CLMS2].

In the proof of Theorem 5.1 we used the idea in [SaU]. Assuming that f⊥∇u and u ∈ C1, we show that

u satisfies a monotonicity identity (Corollary 2.2), which is essential to the proof. In fact, the result is not

true without this assumption; for examples, see [G].

The monotonicity property (defined in Corollary 2.2) in Theorem 2.6 is also essential when p ∈ (1, n).

Riviere constructed an example [RT] of 2-harmonic map from B3 to S2 that is everywhere discontinuous and

has no monotonicity property. For more discussions on the monotonicity, see [SU1][HL1][SR][DF][CL][ML].

We now make some remarks on the notations. We use the summation convention that repeated indices

are summed over. ∂u
∂xα

is also denoted by ∂αu or uα. For r > 0, we denote by Br a ball of radius r,

and Sr = ∂Br. To indicate the center of the ball, say x, we write Br(x), and Sr(x) = ∂Br(x). The

integral measures are suppressed when they are clear from the domain, for example,
∫

Ω
f(x) =

∫
Ω
f(x)dx,

∫
∂Br

f(x) =
∫
∂Br

f(x)dSr. The constants C may vary from line to line; their dependence other than n,m, p

will be described or indicated by a C(δ,M), etc.

We thank Tom Wolff for bringing to our attention the article of Lewis. Recently we learned that Hardt

and Lin [HL2] also had a proof for Theorem 3.2 in this paper.

§ 2. Interior regularity theorem

In this section we consider the regularity of solutions of

(2.1) div(|∇u|p−2∇u) = f(x, u,∇u),

where f is assumed (through this paper) to be smooth, and there is a non-decreasing function µ : [0,∞)→
[0,∞) so that for x ∈ Ω̄, y ∈ Rm and z ∈ Rmn,

(2.2) |f |, |fx|, |fy|, |z||fz| ≤ µ(|y|)|z|p <∞.

Sometimes we also assume that

(2.3) f(x, u,∇u)⊥∇u,

that is, f⊥∂αu for each α. Note that the both equations (1.2) and (1.5) satisfy (2.3).

Theorem 2.1. Suppose that u ∈ C1(Ω,Rm) is a weak solution of (2.1) such that u and f satisfy (2.2) and

(2.3). Then u satisfies the monotonicity identity:

(2.4)
d

dr

(
rp−n

∫

Br

|∇u|p
)

= prp−n
∫

∂Br

|∇u|p−2|ur|2

for any Br = Br(x0) ⊂ Ω. Here r = |x− x0| and ur = ∂u
∂r .
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Proof. The monotonicity identity can be derived from the following identity:

(2.5)
∫

Ω

|∇u|pdivX − p|∇u|p−2∂αu∂βu∂αX
β = 0,

for X ∈ C1
0 (Ω,Rn), as in [DF][ML].

To verify (2.5), let X ∈ C1
0 (Ω,Rn). If X is supported in Ω+ = {x ∈ Ω : |∇u|(x) > 0} where u is actually

C2, then we may take φ ≡ ∑α
∂u
∂xα

Xα ∈ C1
0 (Ω+,Rn). Then by (2.3) we have φ · f(x, u(x),∇u(x)) = 0.

Thus (2.1) yields

0 =
∫

Ω

|∇u|p−2∇u∇φ

=
∫

Ω

1
p
∂α(|∇u|p)Xα + |∇u|p−2∂αu∂βu∂αX

β

=
∫

Ω

−1
p
|∇u|pdivX + |∇u|p−2∂αu∂βu∂αX

β .

So (2.5) holds for X ∈ C1
0 (Ω+,Rn). Since ∇u(x) = 0 on Ω \ Ω+, (2.5) is true for all X ∈ C1

0 (B1 \ {0},Rn)

as shown by an approximation in [DF].

For stationary harmonic maps to manifolds, (2.4) was showed in [HL1, p570].

Corollary 2.2. If u is as in Theorem 2.1, then u has monotonicity property, that is, the normalized energy

rp−n
∫
Br(x)

|∇u|p is increasing in r, where Br(x) ⊂ Ω. In particular, if p = n, then

(2.6)
∫

∂Br

|∇u|n = n

∫

∂Br

|∇u|n−2|ur|2.

Proof. Monotonicity of u and (2.6) directly follow from previous theorem.

Remark. If fact (2.4) and (2.6) hold for Br = Br(x0) even if we only assume u ∈ C1(Ω \ {x0},Rm). In

this case (2.5) holds for X ∈ C1
0 (Ω \ {x0},Rn).

Theorem 2.3.

(a). If u ∈ W 1,p(Ω,Rm) ∩ C0,β(Ω,Rm) for some β ∈ (0, 1) is a solution of (2.1), then u ∈ C1,α(Ω,Rm) for

some α ∈ (0, 1).

(b). There are positive numbers ε and C, depending on p, n,m, µ(M), so that if u ∈ C1(Ω,Rm) is a solution

of (2.1) with |u| ≤M and if u satisfies (2.3) and rp−n
∫
Br(x)

|∇u|p ≤ ε, then

sup
B r

2
(x)

|∇u|p ≤ C −
∫

Br(x)

|∇u|p.

Proof. (a) can be proved by following the outline of the proof of Theorem 3.1 in [HL1].

(b) was proved for p-harmonic maps to manifolds in [DF, Thm 2.1]. The main ingredient of the proof

was monotonicity property, which in our case follows from Corollary 2.2.

4



When f ≡ 0, the solutions of (2.1) are p-harmonic functions, whose regularity is well-known, proved by

Uhlenbeck [UK, Thm. 3.2 & 5.4] for p ≥ 2 and Tolksdorff [T] for p > 1:

Theorem 2.4. If u ∈ W 1,p(Br(x),Rm) is p-harmonic, then u ∈ C1,α(Br(x),Rm) for some α ∈ (0, 1), and

for some constant C(n,m, p),

sup
B r

2
(x)

|∇u|p ≤ C −
∫

Br(x)

|∇u|p.

We will use a simple inequality: For an integer k ≥ 1 and a number p > 1, there is a constant

c = c(k, p) > 0 so that for any a, b ∈ Rk,

(2.7)
(|a|p−2a− |b|p−2b

) · (a− b) ≥ c|a− b|p, for p ≥ 2;

(2.8)
(|a|p−2a− |b|p−2b

) · (a− b) ≥ c|a− b|2(|a|+ |b|)p−2, for 1 < p < 2.

We also need some properties of Hardy space and the space BMO(Rn). By definition, BMO(Rn)

consists of all functions f ∈ L1
loc(Rn) with bounded mean oscillation (BMO):

(2.9) ‖f‖BMO = sup{−
∫

Br(x)

|f − f̄x,r|dy : x ∈ Rn, r > 0} <∞,

where f̄x,r = −∫
Br(x)

f is mean value of f on Br(x). Obviously, L∞(Rn) ⊂ BMO(Rn).

The Hardy space H1(Rn) is the set of all g ∈ L1(Rn) such that

g∗(x) = sup
r>0
|
∫

Rn

g(y)φr(x− y)dy| ∈ L1(Rn),

with norm

‖g‖H1 = ‖g∗‖L1(Rn),

where φ is a fixed function in C∞0 (B1) with
∫
B1
φ = 1, and φr(x) = 1

rnφ
(
x−y
r

)
. Note that H1(Rn) is

independent of the choice of φ; see [FS] or [Ss].

The delicate relation between H1 and BMO is contained in the following famous theorem of Fefferman-

Stein [FS].

Theorem 2.5. H1(Rn)∗ = BMO(Rn). In particular, the integral
∫
Rn fg, which is well-defined for

f ∈ H1(Rn) ∩ C∞ and g ∈ BMO(Rn), can be extended to any f ∈ H1(Rn), and there is a constant

C = C(n) such that

|
∫

Rn

fg| ≤ C‖f‖H1‖g‖BMO.
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In our application, functions are defined on Ω ⊂ Rn. We say a function f ∈ L1
loc(Ω) lies in H1

loc(Ω) if

each point in Ω has a neighborhood U (⊂ Ū ⊂ Ω) on which f agrees with a function in H1(Rn). For such

U , define

(2.10) ‖f‖H1(U) = inf{‖g‖H1(Rn) : f |U = g|U}.

Suppose u ∈W 1,p(Ω,Rm) is a solution of (2.1). We will assume that

(2.11) f(·, u,∇u) ∈ H1
loc(Ω).

More specifically, we assume that there is constant C such that for any ball Bρ ⊂ Ω.

(2.12) ‖f(·, u,∇u)‖
H1

(
B 1

2 ρ

) ≤ C
∫

Bρ

|∇u|p.

It follows that if ψ ∈W 1,p
0 (B 1

2ρ
,Rm) ∩ BMO, then by Theorem 2.5,

(2.13) |
∫

Bρ

f(·, u,∇u) · ψ| ≤ C‖ψ‖BMO

∫

Bρ

|∇u|p.

Our main result in this section is

Theorem 2.6. If u ∈ W 1,p(Ω,Rm), p ∈ (1, n], is a solution of (2.1) with the monotonicity property and

f(x, u,∇u) satisfies (2.11) and (2.12), then u ∈ C1,α(Ω\Z,Rm) for some 0 < α < 1 and closed subset Z ⊂ Ω

with Hn−p(Z) = 0. If p = n, then u ∈ C1,α(Ω,Rm).

The proof of this theorem is reduced to the following lemma.

Lemma 2.7. There exist numbers ε0, τ ∈ (0, 1), depending n,m, p, so that if u is as in Theorem 2.7 with

e(x, r) := rp−n
∫
Br(x)

|∇u|p ≤ ε0, then

e(x, τr) ≤ 1
2
e(x, r).

Proof of Theorem 2.6. Take ε = 2p−nε0, where ε0 is as in Lemma 2.7. We claim that if B2ρ(x) ⊆ Ω and

e(x, 2ρ) ≤ ε, then u ∈ C1,α(Bρ(x),Rm) for some α ∈ (0, 1).

Indeed, for any y ∈ Bρ(x) and r ∈ (0, ρ], the monotonicity of e(x, r) in r implies

e(y, r) ≤ e(y, ρ) ≤ 2n−pe(x, 2ρ) ≤ ε0.

So Lemma 2.7 implies that for some τ ∈ (0, 1) and all r ∈ (0, ρ], there holds

(2.14) e(y, τr) ≤ 1
2
e(y, r).
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For any r ∈ (0, ρ], let k ≥ 1 be an integer such that r ∈ [τkρ, τk−1ρ). Then it follows from (2.14) and the

monotonicity of e(y, r) that

e(y, r) ≤ e(y, τk−1ρ) ≤ 2−k+1e(y, ρ) ≤ 2ε0

(
r

ρ

)θ
,

where θ = logτ
1
2 . By Morrey’s Lemma [MC, 3.5.2], u is C

θ
p on Bρ(x). By Theorem 2.3, u ∈ C1,α(Bρ(x),Rm)

for some α ∈ (0, 1).

Let Z = {x ∈ Ω : lim infr→0 e(x, r) ≥ ε}. Then u ∈ C1,α(Ω \ Z,Rm), and that Hn−p(Z) = 0 follows

from a covering argument (see [G]).

Proof of Lemma 2.7. We show that Lemma 2.7 holds for a τ ∈ (0, 1
8 ) satisfying 22n+2Cτp < 1, where C

is as in Theorem 2.4. For otherwise, there would be a sequence Bri(xi) ⊆ Ω such that

(2.15) λpi ≡ e(xi, ri) ↓ 0, but e(xi, τri) ≥ 1
2
λpi .

Define vi : B1 → Rm by

vi(z) = λ−1
i [u(xi + riz)− ūx,r], z ∈ B1.

Then by Poincare inequality,

(2.16)
∫

B1

|∇vi|p = 1,
∫

B1

|vi|p ≤ C,

where C = C(n, p). In terms of vi, the second inequality of (2.15) becomes

(2.17) τp−n
∫

Bτ

|∇vi|pdz ≥ 1
2
.

The boundedness of vi in W 1,p (2.16) implies that there is a subsequence {vk} ⊆ {vi} such that

(2.18) vk → v0 in Lp(B1,Rm); ∇vk ⇀ ∇v0 weakly in Lp(B1,Rnm),

for some v0 ∈W 1,p(B1,Rm).

We want to show the strong convergence vk → v0 in W 1,p(B 1
4
,Rm). For this, take a function

ξ ∈ C1
0 (B 1

2
, [0, 1]) so that |∇ξ| ≤ 2 and ξ = 1 on B 1

4
.

First look at the case p ≥ 2. Applying (2.7), we have

c

∫

B1

ξ|∇vk −∇vl|p ≤
∫

B1

[|∇vk|p−2∇vk − |∇vl|p−2∇vl] · ∇[(vk − vl)]ξ

=
∫

B1

[|∇vk|p−2∇vk − |∇vl|p−2∇vl] · [∇((vk − vl)ξ) + (vk − vl)∇ξ].(2.19)

Using Hölder inequality together with (2.16), we have, as k, l→∞,

(2.20) |
∫

B1

[|∇vk|p−2∇vk − |∇vl|p−2∇vl] · [(vk − vl)∇ξ]| ≤ C‖vk − vl‖Lp(B1) → 0.
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Now we estimate the remaining terms in (2.19) by using (2.13) and following fact

(2.21) sup
l,k

(‖vlξ‖BMO + ‖vkξ‖BMO) <∞.

(2.21) will be proved in a moment. Denote ψ = (vk − vl)ξ and φ(·) = ψ
(
·−xk
rk

)
. Assuming (2.21), then

‖ψ‖BMO = ‖φ‖BMO is bounded independent of k and l, and φ is supported in B 1
2 rk

(xk). By a change of

variables, the equation (2.1) and (2.13), we get

|
∫

B1

|∇vk|p−2∇vk · [∇((vk − vl)ξ] =
rp−nk

λp−1
k

|
∫

Brk (xk)

|∇u|p−2∇u∇φ |

=
rp−nk

λp−1
k

|
∫

Brk (xk)

f(·, u,∇u) · φ | ≤ rp−nk

λp−1
k

‖φ‖BMO

∫

Brk (xk)

|∇u|p

= C‖φ‖BMOλk → 0, as k, l→∞.

Similarly, | ∫
B1
|∇vl|p−2∇vl · [∇(vk − vl)ξ]| → 0 as k, l →∞. Those estmates, combined with (2.19)-(2.20),

imply that
∫
B 1

4

|∇vk −∇vl|p → 0 as k, l →∞. So ∇vk is a Cauchy sequence and is strongly convergent in

Lp.

Since vk satisfies (2.16) and (2.17), its strong convergence implies that

(2.22)
∫

B 1
4

|∇v0|pdz ≤ 1,
∫

B 1
4

|v0|pdz ≤ C0.

∫

B 1
4

|∇v0|p−2∇v0 · ∇ϕdz = 0

for all ϕ ∈ C1
0 (B 1

4
,Rm). So v0 is a p-harmonic function on B 1

4
and by Theorem 2.4 and (2.22),

sup
B 1

8

|∇v0|p ≤ C −
∫

B 1
4

|∇v0|p ≤ C 4n

ωn
.

Thus for the chosen 0 < τ < 1
8 ,

τp−n
∫

B0

|∇v0|pdz ≤ C4nτp ≤ 1
4
,

a contradiction to the limit of (2.17). This ends the case p ≥ 2.

If 1 < p < 2, we use (2.8) to get

∫

B 1
4

|∇vk −∇vl|p ≤ C
(∫

B1

(|∇u|+ |∇v|)p
) 2

2−p

(∫

B1

[|∇vk|p−2∇vk − |∇vl|p−2∇vl] · ∇[(vk − vl)]ξ
) 2
p

.

The rest of the proof is similar.
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To complete the proof, we need to show (2.21). It suffices to show that supi ‖viξ‖BMO <∞. We follow

the proof of Evans [EL] for the case p = 2. Indeed, for z ∈ B 7
8

and r ∈ (0, 1
8 ], by the monotonicity property

of u, we have

rp−n
∫

Br(z)

|∇vi(y)|pdy = λ−pi rp−n
∫

Br(z)

|∇u|p(xi + riy)rpi dy

= λ−pi (rir)p−n
∫

Brir(xi+riz)

|∇u|p(x)

≤ λ−pi (
ri
8

)p−n
∫

B ri
8

(xi+riz)

|∇u|p(x)

≤ 8n−pλ−pi ri
p−n

∫

Bri (xi)

|∇u|p(x) ≤ 8n−p.

From this and John-Nirenberg’s inequality [JN], we get
∫
B 7

8
(0)
|vi|n is bounded. Thus for z ∈ B 6

8
and

r ∈ (0, 1
8 ],

rp−n
∫

Br(z)

|vi|p ≤ C
(∫

Br(z)

|vi|n
) p
n

≤ C


∫

B 7
8

(0)

|vi|n



p
n

≤ C <∞.

Denote w = viξ. For any z ∈ B 3
4
(0) and r ∈ (0, 1

8 ], we obtain from Poincare’s inequality and the above

two estimates,

−
∫

Br(z)

|w − w̄z,r| ≤ Cr1−n
∫

Br(z)

|∇w|(2.23)

≤ C
(
rp−n

∫

Br(z)

|∇w|p
) 1
p

≤ C
(
rp−n

∫

Br(z)

|∇vi|p + |vi|p
) 1
p

≤ C <∞.

This estimate also holds for z ∈ Bn \R 3
4
(0) or r > 1

8 . By definition (2.9), we see supi ‖viξ‖BMO < ∞.

Thus (2.21) is proved.

§ 3. Applications

To apply Theorem 2.6, we need to know when the right hand side f is in H1 and satisfies (2.13).

Coiffman, Lions, Meyer and Semmes give the following criterion [CLMS1,2]:

Suppose that B ∈ Lp(Rn,Rn) and E ∈ Lp
′
(Rn,Rn), where 1 < p < ∞ and p′ = p

p−1 , so that

in distributional sense curl(B) = (∂Bi∂xj
− ∂Bj

∂xi
)ij = 0 (curl free) and div(E) = 0 (divergence free). Then

E ·B ∈ H1(Rn) and for some constant C(n, p)

‖E ·B‖H1 ≤ C‖E‖Lp′‖B‖Lp .

In particular, it applies to the case when E = ∇u, where u ∈W 1,p(Rn).
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A local version of the above criterion also holds. It directly follows from the proof in [CLMS2] (pages

9-10). In particular, if u ∈W 1,p
0 (B1) and E ∈ Lp′(B1,Rn) is divergence free, then we also have ∇u ·E ∈ H1

(E is extended so that E = 0 on Rn \B1). Thus by the definition (2.10), ∇u · E ∈ H1
loc(B1) and

(3.0) ‖∇u · E‖H1(B 1
2

) ≤ ‖∇u · E‖H1 ≤ C‖E‖Lp′ (B1)‖∇u‖Lp(B1),

for a constant C independent of u and E.

If u does not have compact support, we may consider g ≡ (u−ū)ξ, where ū = −∫
B1
u and ξ ∈ C1

0 (B 3
4
, [0, 1])

is a cut-off function with ξ = 1 on B 1
2

and |∇ξ| ≤ 6. Note that ∇g · E = ∇u · E on B 1
2

and by Poincare’s

inequality ‖∇g‖Lp(B1) ≤ C‖∇u‖Lp(B1). Then by definition (2.10), and (2.13) applied to ∇g · E, we have

that ∇u · E also satisfies (3.0). By rescaling, we obtain

Proposition 3.1. Suppose that u ∈W 1,p(Bρ), E ∈ Lp′(Bρ,Rn) is divergence free, then

‖∇u · E‖H1(B 1
2 ρ

) ≤ C‖E‖Lp′ (Bρ)‖∇u‖Lp(Bρ).

Theorem 3.2. Suppose p ∈ (1, n) and S = Sm−1. If u ∈ W 1,p(Ω,S) is a p-harmonic map with the

monotonicity property, then u ∈ C1,α(Ω \Z,S) for some 0 < α < 1 and closed Z ⊂ Ω with Hn−p(Z) = 0. If

p = n, then u ∈ C1,α(Ω,S).

For the proof, we first give another description on p-harmonic maps to spheres.

Proposition 3.3. If u ∈ W 1,p(Ω,Rm), |u| = 1, then u is a p-harmonic map to S if and only if for all

1 ≤ i, j ≤ n, the vector function

(3.2) Eij = (Eijα )1≤α≤m =
(|∇u|p−2uiαu

j − |∇u|p−2ujαu
i
)

1≤α≤m

is divergence free, that is,
∫

Ω
Eijα ϕα = 0 for every ϕ ∈ C1

0 (Ω). (As usual, repeated indices are summed.)

Proof : Suppose that u is p-harmonic, then by (1.3), for every ϕ ∈ C1
0 (Ω),

∫

Ω

Eijα ϕα =
∫

Ω

|∇u|p−2uiαu
jϕα − |∇u|p−2ujαu

iϕα(3.3)

=
∫

Ω

|∇u|p−2uiα(ujϕ)α − |∇u|p−2ujα(uiϕ)α

=
∫

Ω

|∇u|puiujϕ− |∇u|pujuiϕ = 0.

So Eij is divergence free. Conversely, suppose (3.3) holds for all ϕ ∈ C1
0 (Ω). By approximation, it holds

with ϕ replaced by uiϕ ∈W 1,p
0 (Ω,Rm). It follows from

∑
i u

iui = 1 that
∑
i u

i
αu

i = 0 and

0 =
∫

Ω

Eijα (uiϕ)α =
∫

Ω

|∇u|p−2uiαu
j(uiϕ)α − |∇u|p−2ujαu

i(uiϕ)α

=
∫

Ω

|∇u|pujϕ− |∇u|p−2ujαϕα.

This is exactly (1.3). So u is p-harmonic.
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Proof of Theorem 3.2. We show that f = u|∇u|p satisfies (2.11) and (2.12).

For k ∈ {1, . . . , n}, we write the k-th component of f as

fk = uk|∇u|p = uiα
(
uiαu

k − ukαui
) |∇u|p−2 ≡ ∇ui · Eik

where we have used the fact that
∑
i u

i
αu

i = 0. By Proposition 3.3, Eik are of divergence free and

|Eik| ≤ |∇u|p−1. By Proposition 3.1, we obtain that

‖f‖H1(B 1
2 ρ

) ≤ C‖Eik‖Lp′ (Bρ)‖∇u‖Lp(Bρ) ≤ C‖∇u‖pLp(Bρ).

Now we turn to n-harmonic maps with constant volume. For u = (u1, . . . , un+1) ∈ C1(Ω, Rn+1), define

(3.4) V (u) =
∫

Ω

u1J(u2, . . . , un+1),

where J(u2, . . . , un+1) =
∂(u2, . . . , un+1)
∂(x1, . . . , xn)

.

Proposition 3.4. V is well-defined for every u = (u1, . . . , un+1) ∈ W 1,n
0 (Ω) ×W 1,n(Ω,Rn) and for some

C = C(n,Ω), there holds

(3.5) |V (u)| ≤ C Πn+1
i=1 ‖∇ui‖Ln(Ω).

Proof. We first prove the estimate (3.5) for u ∈ C1, for which V (u) is obviously well-defined and finite.

Extend u1 as ũ1 on Rn so that ũ1 = 0 on Rn \Ω. It is easy to see that (cf. (2.23)) ũ1 ∈ BMO(Rn) and for

some C(n),

‖ũ1‖BMO ≤ C ‖∇ũ1‖Ln(Ω) = C‖∇u1‖Ln(Ω).

For i ≥ 2, denote ūi = −∫
Ω
ui. By extension theorem [AR], there is a function wi ∈W 1,n(Rn) such that

wi = ui − ūi and ‖∇wi‖Ln(Rn) ≤ C1‖ui − ūi‖W 1,n(Ω) ≤ C2‖∇ui‖Ln(Ω), where C1 and C2 depend only on n

and Ω. Define ũi = wi + ūi. Then ũi extends ui and satisfies

(3.6) ‖∇ũi‖Ln(Rn) ≤ C‖∇ui‖Ln(Ω).

By Theorem II.1 (1), J(ũ2, . . . , ũn+1) ∈ H1(Rn) and for some C = C(n,Ω),

‖J(ũ2, . . . , ũn+1)‖H1 ≤ C Πn+1
i=2 ‖∇ui‖Ln(Ω).

Now apply Theorem 2.5 to get

|
∫

Ω

u1J(u2, . . . , un+1)| = |
∫

Rn

ũ1J(ũ2, . . . , ũn+1)|

≤ C ‖ũ1‖BMO‖J(ũ2, . . . , ũn+1)‖H1

≤ C Πn+1
i=1 ‖∇ui‖Ln(Ω).

This estimate shows that V is continuous in the norm of W 1,n(Ω,Rn+1); so V extends to W 1,n
0 (Ω) ×

W 1,n(Ω,Rn), the closure of C1
0 (Ω,R)× C1(Ω,Rn) in W 1,n(Ω,Rn+1), and the inequality also holds.
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Corollary 3.5.

(a). For u ∈W 1,n(Ω,Rn+1) and v ∈W 1,n
0 (Ω,Rn+1), denote J(u) = ∂1u∧ . . .∧ ∂nu. Then

∫
Ω
v · J(u) is well

defined and

(3.7) |
∫

Ω

v · J(u)| ≤ C‖∇v‖Ln(Ω)‖∇u‖nLn(Ω),

for some constant C(n,Ω).

(b). V(u) ≡ ∫
Ω
u · J(u) is well-defined for every u ∈W 1,n(Ω,Rn+1) with u|∂Ω in L∞.

Proof. Note that ∫

Ω

v · J(u) =
n+1∑

i=1

(−1)iviJ(u1, · · · , ui−1, ui+1, · · · , un+1).

So (3.7) follows from (3.5).

For u as in (b), let ū be the harmonic extension of u|∂Ω on Ω. Then ū ∈ C1(Ω) and by maximum

principle, ‖ū‖ ≤ max∂Ω ‖u‖. Note
∫

Ω
ū · J(u) is well-defined since ū is bounded and J(u) ∈ L1, while

∫
Ω

(u − ū) · J(u) is well-defined since u − ū ∈ W 1,n
0 (Ω, Rn+1) and by part (a). So V(u) =

∫
Ω
u · J(u) =

∫
Ω
ū · J(u) +

∫
Ω

(u− ū) · J(u) is also well-defined.

Thus for a given bounded boundary data φ|∂Ω, the image of any function u ∈ W 1,n(Ω,Rm) with

u|∂Ω = φ spans a cone with finite volume V(u). The critical points of
∫

Ω
|∇u|n subject to prescribed volume

are called n-harmonic maps with constant volume, and satisfy (1.5). Here we apply Theorem 2.6 to obtain

the regularity of such n-harmonic maps.

Theorem 3.6. Suppose that u ∈ W 1,n(Ω,Rn+1) is a weak solution of the equation (1.5). Then

u ∈ C1,α(Ω,Rn+1) for some α ∈ (0, 1).

Proof. Again we need to verify that f = HJ(u) satisfies (2.11) and (2.12).

For any Br ⊂ Ω, there is an extension ũ ∈ W 1,n(Rn,Rn+1) of u|Br such that ‖∇ũ‖Ln(Rn) ≤
C‖∇u‖Ln(Br), as in (3.6). In this case, C depends only on n. Let λ = −∫

B2r
u and consider v = ξ(ũ − λ),

where ξ ∈ C1
0 (B2r, [0, 1]) is a cut-off function with ξ = 1 on Br and |∇ξ| ≤ 2

r . Then it is not hard to see

that HJ(u) = HJ(v) on Br and HJ(v) is a H1 function with

‖J(v)‖H1(Br) ≤ C‖∇v‖nLn(B2r) ≤ C‖∇u‖nLn(Br).

So (2.12) holds.

§ 4. Boundary regularity

Theorem 4.1. Suppose that ∂Ω is Lipschitz, φ ∈ C0(∂Ω,Rm). If u ∈ C1(Ω, Rm) is a weak solution of

(4.1) div(|∇u|n−2∇u) = f(x, u,∇u),
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where f and u satisfy (2.2) and (2.3), and u = φ on ∂Ω (in trace sense), then u ∈ C0(Ω̄,Rm)∩C1,α(Ω,Rm)

for some α ∈ (0, 1).

We first recall a property for functions in W 1,n. For x ∈ Bρ(x0), we may write x in polar coordinates

as x = rθ, where r = |x− x0|, θ ∈ S := Sm−1.

Lemma 4.2. If u ∈W 1,n(B2ρ,Rm), then there exist r ∈ (ρ, 2ρ) and C = C(n,m) such that

(4.2)
∫

S

|∇θu|n(rθ)dS ≤ 2
∫

B2ρ

|∇u|ndx,

(4.3) |u(rθ1)− u(rθ2)| ≤ C|θ1 − θ2| 1n ‖∇u‖Ln(B2ρ).

for all θ1, θ2 ∈ S.

Proof. Note that |∇u|2 = |ur|2 + r−2|uθ|2, where uθ = ∇θu. We have

∫

B2ρ

|∇u|n ≥
∫ 2ρ

ρ

∫

S

[|ur|2 + r−2|uθ|2]
n
2 rn−1drdS ≥

∫ 2ρ

ρ

r−1

∫

S

|uθ|ndrdS

By Fubini’s Theorem, there is a r ∈ (ρ, 2ρ) such that

∫

B2ρ

|∇u|n ≥ ρ

r

∫

S

|uθ|n(rθ)dS ≥ 1
2

∫

S

|uθ|n(rθ)dS,

this shows (4.2). By (4.2) and Sobolev’s embedding theorem W 1,n(S,Rm) ⊂ C0,α(S,Rm), (4.3) follows,

with α = 1
n .

Theorem 4.3. There are constants ε > 0 and C depending only on n,m,M but not on Ω so that if u is

as in Theorem 4.1, supΩ |u| ≤M and
∫

Ω
|∇u|n < ε0, then

sup
Ω
|u− p| ≤ C sup

∂Ω
|u− P |+ C‖∇u‖Ln(Ω).

Proof. Let ε be as in Theorem 2.3 (with p = n), then there is a constant C = C(n,m, µ(M)) such that

for every ball Br ⊂ Ω we have

(4.4) sup
B r

2

|∇u| ≤ Cr−1‖∇u‖Ln(Ω).

Let L = supΩ |u− P | and p ∈ Ω be a point such that

(4.5) |u(p)− P | ≥ 3
4
L.

Denote ρ = dist(p, ∂Ω) > 0. If ‖∇u‖Ln(Ω) ≥ L, then the conclusion already holds. Otherwise we proceed as

follows.
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From (4.5), it follows

(4.6) sup
B ρ

2
(p)

|∇u| ≤ C

ρ
L.

Let r1 = ρ
2C . Then from (4.4)-(4.6) we have for q ∈ B̄r1(p), there holds

(4.7) |u(q)− P | > L

4
.

Since Ω is Lipschitz, there is, by Theorem 4.32 in [AR], an extension ũ of u to Rm such that

‖∇ũ‖Ln(Rn) ≤ C‖∇u‖Ln(Ω) for some C = C(n,Ω). By Lemma 4.2, applied to ũ on B2ρ(p), there is a

r2 ∈ (ρ, 2ρ) such that

(4.8) |u(r2θ1)− u(r2θ2)| ≤ C‖∇u‖Ln(Ω)|r2θ1 − r2θ2| 1n ≤ C1‖∇u‖Ln(Ω),

for all r2θ1, r2θ2 ∈ Sr2(p). Take a θ1 ∈ S such that |u(r1θ1)− u(r2θ1)| = infθ∈S |u(r1θ)− u(r2θ)|. By using

Hölder’s inequality and the fact r2 ≤ 4Cr1, we have

|u(r1θ1)− u(r2θ1)| ≤ 1
ωn

∫

S

∫ r2

r1

|ur(rθ)|drdS(4.9)

≤ 1
ωnr

n−1
1

∫

Br2 (p)

|ur| ≤ 1
ωnr

n−1
1

‖∇u‖Ln(Br2 (p))[ωnr2]n−1 ≤ C‖∇u‖Ln(Ω).

Now take an r2θ2 ∈ Sr2(p) ∩ ∂Ω 6= ∅. Then from (4.7)-(4.9) we have

L

4
≤ |u(r1θ1)− P |

≤ |u(r1θ1)− |u(r2θ1)|+ |u(r2θ1)− u(r2θ2)|+ |u(r2θ2)− P |

≤ C‖∇u‖Ln(Ω) + sup
∂Ω
|u− P |.

By the definition of L, we get the desired inequality.

Proof of Theorem 4.1. Extending u to Rn, we may assume the u is defined on Rn with
∫
Rn |∇u|n <∞.

Let p ∈ ∂Ω and denote P = u(p). For any given small number δ > 0, we may choose ρ > 0 such that

(4.10)
∫

Bρ(p)

|∇u|n ≤ δ, |u(q)− P | ≤ δ,

for all q ∈ Bρ(p) ∩ ∂Ω. By Lemma 4.2 and (4.10), there is an r ∈ (ρ2 , ρ) such that

(4.11)
∫

Sr(p)

|∇u|n ≤ 2δ, |u(q1)− u(q2)| ≤ Cδ 1
n ,

for all q1, q2 ∈ Sr(p). Let Σ = Br(p) ∩ Ω and choose δ ≤ ε for the ε in Theorem 4.3. Then Σ is Lipschitz

and by (4.10)-(4.11)

(4.12) sup
∂Σ
|u− P | ≤ δ + Cδ

1
n .

By Theorem 4.3 (with Ω = Σ) and (4.12), we have

sup
Σ
|u− P | ≤ C sup

∂Σ
|u− P |+ C‖∇u‖Ln(Σ)

≤ Cδ + Cδ
1
n .

So u is continuous at p.
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§ 5. Isolated singularities are removable

Theorem 5.1. If u ∈ C1(B1 \ {0},Rm) is an solution of

(5.1) div(|∇u|n−2∇u) = f(x, u,∇u),

finite energy
∫

Ω
|∇u|n < ∞, where f and u satisfy (2.2) and (2.3), then u extends to a solution in

C1,α(B1,Rm) for some α ∈ (0, 1).

Corollary 5.2.

(a). If u ∈ C1(B1 \ {0}, N) is an n-harmonic map with finite energy, then u extends to an n-harmonic map

in C1,α(B1, N) for some α ∈ (0, 1).

(b). If u ∈ C1(B1 \ {0},Rn+1) satisfies the equation

div(|∇u|n−2∇u) = gJ(u)

on B1 \ {0}, where g ∈ C1(B1), then u ∈ C1,α(B1,Rn+1) for some α ∈ (0, 1).

Theorem 5.3. If u ∈ C1(B1 \ {0},Rm) is in Theorem 5.1, then

(5.2)
∫

Sr

|∇u|n ≤ nn2
∫

Sr

|ur|n,
∫

Sr

|∇u|n ≤
(

n

n− 1

)n
2
∫

Sr

|uθ|n.

where ur = ∂u
∂r , and uθ = ∇Su.

Proof : Using Hölder’s inequality in (2.6) (cf. Remark there), we get

∫

Sr

|∇u|n ≤ n
(∫

Sr

|∇u|n
)n−2

n
(∫

Sr

|ur|n
) 2
n

.

This gives the first part of (5.2). Replacing |∇u|n by |∇u|n−2[|uθ|2 + |ur|2] in (2.6), we get

∫

Sr

|∇u|n−2|uθ|2 = (n− 1)
∫

Sr

|∇u|n−2|ur|2 =
n− 1
n

∫

Sr

|∇u|n.

Using Hölder inequality again to get the second part of (5.2).

Proof of Theorem 5.1. Since u has finite energy, we may take s > 0 such that that
∫
B2s
|∇u|n ≤ ε,

where ε is as in Theorem 2.3. Thus for any x ∈ Bs \ {0}, we may apply Theorem 2.3 to Br(x) ⊂ B2s with

r = |x|
2 to get for some constant C,

(5.3) |∇u|(x) ≤ C

|x|

(∫

B2|x|
|∇u|n

) 1
n

.

Fix a t ∈ (0, s] and define a function q : (0, t]→ Rm such that

q(r) = ai log r + bi, for r ∈ [
t

2i+1
,
t

2i
], i = 0, 1, 2, . . . ,

15



where ai and bi are chosen so that q is continuous and q( t2i ) = −∫
S1
u( t2i ·).

Note that q(|x|) is an n-harmonic function on { t
2i+1 ≤ |x| ≤ t

2i }, that is,

(5.4) div(|∇q|n−2∇q) = 0.

Note that q(r) is componentwise monotone, then for any ϕ ∈ S1 and t
2i+1 ≤ r ≤ t

2i , we use (5.3) and the

definition of q to estimate

|q(r)− u(rϕ)| = |q( t

2i+1
)− q( t

2i
)|+ |q( t

2i
)− u(rϕ)|(5.5)

≤ −
∫

S1

|u(
t

2i
·)− u(

t

2i+1
·)|+−

∫

S1

|u(
t

2i
·)− u(rϕ)|

≤ 2−i+2 max
t

2i+1≤r≤ t

2i

|∇u(r·)|

= 2−i+22i+1C

(∫

B2s

|∇u|n
) 1
n

≤ 8Cε
1
n .

By (2.7) and integration by parts, we get

c

∫

B1

|∇q −∇u|n ≤
∫

Bt

(|∇q|n−2∇q − |∇u|n−2∇u) (∇q −∇u)

≤ −
∫

Bt

div
(|∇q|n−2∇q − |∇u|n−2∇u) (q − u)+(5.6)

+
∞∑

i=0

∫

Sr

(|∇q|n−2qr − |∇u|n−2ur
)

(q − u)
∣∣∣∣
r= t

2i

r= t

2i+1

.

The first integral in (5.6) is simplified by (5.1) and (5.4). Those terms containing qr in the second sum

are zero since q( t2i ) = −∫
St
u( t2i ·). Since ur is continuous, the other terms that contain the factor ur are

canceled successively, with only the first one remained. So we have

(5.7) c

∫

Bt

|∇q −∇u|n ≤ −
∫

Bt

f(x, u,∇u)(q − u) +
∫

St

|∇u|n−2ur(q − u).

Using (2.2) and (5.5), we get

(5.8) |
∫

Bt

f(x, u,∇u)(q − u)| ≤ C sup |q − u|
∫

Bt

|∇u|n ≤ Cε 1
n

∫

Bt

|∇u|n.

From the Poincare inequality and q(t) = −∫
S
u(t·), we obtain

∫
St
|q − u|n ≤ C(n)tn

∫
St
|uθ|n. Thus by

Hölder’s inequality and using |ur|, |uθ| ≤ |∇u|, we have

(5.9) |
∫

St

|∇u|n−2ur(q − u)| ≤ C(n)t
(∫

St

|∇u|n
)n−1

n
(∫

St

|uθ|n
) 1
n

≤ Ct
∫

St

|∇u|n.

On the other hand, the fact that q is independent of θ and (5.2) imply
∫

Bt

|∇q −∇u|n =
∫

Bt

(|uθ|2 + |qr − ur|2
)n

2(5.10)

≥
∫

Bt

|uθ|n ≥
(
n− 1
n

)n
2
∫

Bt

|∇u|n.
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From (5.6)-(5.10), we see that if we start with a small ε, then there is a constant 1 > τ > 0 such that

τ

∫

Bt

|∇u|n ≤ t
∫

St

|∇u|n,

which implies that for 0 < t < s,

(5.11)
∫

Bt

|∇u|n ≤ tτ
∫

Bs

|∇u|n ≤ εtτ .

For x ∈ B s
2
, going back to (5.3) and applying (5.11) with t = 2|x|, we get

|∇u(x)| ≤ C

|x|

(∫

B2|x|
|∇u|n

) 1
n

≤ C1|x| τn−1.

This implies that for p = n
1− τn > n, u ∈ W 1,p(B1,Rm) ⊂ C0, τn (B1,Rm). Apply Theorem 2.3 (a) to finish

the proof.
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