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Abstract. We study a class of rational matrix differential equations that gen-
eralize the Riccati differential equations. The generalization involves replacing
positive definite “weighting” matrices in the usual Riccati equations with either
semidefinite or indefinite matrices that arise in linear quadratic control prob-
lems and differential games−both stochastic and deterministic. The purpose of
this paper is to prove some fundamental properties such as comparison, mono-
tonicity and existence theorems. These properties are well-known for classical
Riccati differential equations when certain matrices are assumed definite. As
applications, we obtain conditions for the existence of solutions to the algebraic
Riccati equation and to equations with periodic coefficients.
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1 Introduction

We first state the problem to be considered and then discuss its motivation.
Let A, Bi, N , Rij and Si (i, j = 1, 2) be bounded measurable matrix functions
on [0, T ] with appropriate dimensions as described below in (6). Let Sn be
the set of all symmetric n × n matrices. Let Π = (πij)0≤i,j≤2 be an operator
on [0, T ] × Sn (see (7)). We consider the following rational matrix equation
(or generalized Riccati equation) for a differentiable symmetric matrix function
P (t), 0 ≤ t ≤ T :
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
Ṗ (t) +N (t, P (t))− S ′(t, P (t))R(t, P (t))†S(t, P (t)) = 0; (1.1)
P (T ) = G ∈ Sn;
Range[S(t, P (t))] ⊂ Range[R(t, P (t))]; (1.2)
R11(t) + π11(t, P (t)) ≥ 0; R22(t) + π22(t, P (t)) ≤ 0, (1.3)

(1)

where Ṗ (t) = d
dtP (t), (·)† represents matrix pseudoinverse, (·)′ represents matrix

transpose, and

N (t, P ) = PA′(t) + A(t)P + π00(t, P ) + N(t);

S(t, P ) =
(

B′
1(t)P + π10(t, P ) + S1(t)

B′
2(t)P + π20(t, P ) + S2(t)

)
;

R(t, P ) =
(

R11(t) + π11(t, P ) R12(t) + π12(t, P )
R21(t) + π21(t, P ) R22(t) + π22(t, P )

)
.

(2)

A typical problem where equation (1) arises is a linear quadratic (LQ)
stochastic zero-sum game. Specifically, let πij(t, P ) = D′

i(t)PDj(t) for i =
0, 1, 2, where D0, D1 and D2 are bounded measurable matrix functions on [0, T ]
with appropriate dimensions. Then equation (1) is the Riccati equation induced
from a stochastic zero-sum game with the following linear state equation and
quadratic index.

dx = (Ax + B1u1 + B2u2)dt + (D0x + D1u1 + D2u2)dW (t),
for 0 ≤ t ≤ T ;x(0) = x0

J(u1, u2) = E[x′(T )Gx(T )] + E
∫ T

0
[x′Nx

+2x′(S′1u1 + S′2u2) + u′1R11u1 + 2u′1R12u2 + u′2R22u2]dt

(3)

where W is a standard Brownian motion over a probability space, x ∈ Rn is
the state variable, u1 ∈ Rk1 and u2 ∈ Rk2 are control variables taken by two
players, and E[·] is the expectation; see [1] (for LQ deterministic games) or [2].
In fact, it has recently been proved by the second author and J.M. Yong that
equation (1) with πij(t, P ) = D′

i(t)PDj(t) is equivalent to LQ game problems
under appropriate conditions. This shows that equation (1) plays a central role
in LQ games. It is worth pointing out that while the LQ game is stochastic
(with deterministic coefficients), equation (1) is completely deterministic.

Equation (1) is quite general. First, the weighting matrix R(t, P ) is typically
indefinite, due to condition (1.3). This is in contrast to Riccati differential
equations arising from LQ control problems, where the weighting matrices are
necessarily semidefinite. For example, a minimization LQ stochastic control
problem can be considered as a special game (3) with u2 restricted to be 0
(i.e. k2 = 0). In this case, R(t, P (t)) = R11(t) + D′

1PD1 and a necessary
condition for the existence of an optimal control is R(t, P (t)) ≥ 0. Note that
when D1 6= 0 (stochastic LQ controls), this condition may be satisfied even if
R11(t) (the weight matrix of the control u1 in the index J) is indefinite; see [3],
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[4], [5], [6], [7], and [8]. However, when D1 = 0 (deterministic LQ controls), it
is necessary that R(t, P (t)) = R11(t) ≥ 0.

In addition, R(t, P (t)) is allowed to be singular here, while most of existing
literature assumes that R(t, P (t)) is nonsingular. Finally, with the operator
Π(·, ·), equation (1) contains Riccati equations arising from LQ controls and
games with stochastic parameters having jumps; see [9], [10], [11] for such ex-
amples from LQ controls.

The purpose of this paper is to establish the fundamental properties for
equation (1), including comparison and monotonicity theorems and conditions
for existence of solutions. These properties form the basis for solving the equa-
tion and the problems where the equation arises. Specifically, in Section 3, we
will study the structure of (1) and obtain a useful representation and interpre-
tations for (1). In Section 4, we prove comparison theorems for solutions of (1),
generalizing the related results in [10], [11], [12], [13], [14], [15], [16], [17] for
special cases of (1). As an application of the comparison theorems, in Section
5 we give a necessary and sufficient condition for the existence of solutions to
(1) satisfying a strengthened version of (1.3). As another application of the
comparison theorems, we study two interesting special cases in Section 6, where
we prove the monotonicity of solutions to (1) in case the coefficients are either
constant (time-invariant) or periodic. Consequently, we obtain some necessary
and sufficient conditions for the existence of a solution to the algebraic Ric-
cati equation; i.e. a constant solution to (1.1). Finally, we give conditions
guaranteeing periodic solutions to (1).

2 Assumptions

In this section we state the assumptions for equation (1). Note that the block
matrices in (2) are linear in P (t) and we have(

N (t, P ) S ′(t, P )
S(t, P ) R(t, P )

)

= T (t) + Π(t, P ) +

A′(t)P + PA(t) PB1(t) PB2(t)
B′

1(t)P 0 0
B′

2(t)P 0 0


(4)

where Π(·, ·) = (πij(·, ·))0≤i,j≤2, and

T (t) =

N(t) S′1(t) S′2(t)
S1(t) R11(t) R12(t)
S2(t) R21(t) R22(t)

 . (5)

We will state the assumptions for equation (1) in terms of the quadruple (A,B,
T ,Π) that determines (1).

Before we continue, let us make some comments on notations. In the rest
of paper, we will often suppress the variable t. To indicate that a definition
or relationship holds for all t ∈ [0, T ], we will sometimes replace “(t)” by “(·)”
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and drop the phrase for “for all t ∈ [0, T ]”. For example, we will write “P (·) ≥
0” for “P (t) ≥ 0 for all t ∈ [0, T ]”. For a Hilbert space H, we denote by
L∞(0, T ;H) the space of bounded measurable functions with values in H, and by
L1,∞(0, T ;H) the space of functions P ∈ L∞(0, T ;H) with dP

dt ∈ L∞(0, T ;H).
The notation Rk×n will denote the k × n matrices over the reals.

We make two standing assumptions on the quadruple (A,B, T ,Π). Let n, k1

and k2 be nonnegative integers.
(A1). The matrix functions A,Bi, T satisfy

A ∈ L∞(0, T ;Rn×n);

Bi ∈ L∞(0, T ;Rn×ki); Si ∈ L∞(0, T ;Rki×n);

Rij = R′ji ∈ L∞(0, T ; Rki×kj );

N ∈ L∞(0, T ;Sn); G ∈ Sn.

(6)

(A2). The operator Π : [0, T ] × Sn → Sn+k1+k2 is Lipschitz and monoton-
ically increasing. In other words, there exists a constant L such that for all
t ∈ [0, T ] and P, Q ∈ Sn,

|Π(t, P )−Π(t, Q)| ≤ L|P −Q| and,
if P ≤ Q, then Π(t, P ) ≤ Π(t,Q),

(7)

where | · | is a norm on Sn or Sn+k1+k2 .

The range hypothesis (1.2) will be used in two slightly different ways. First,
S(t, P (t)) and R(t, P (t)) are (k1 + k2) × n and (k1 + k2) × (k1 + k2) matrices,
respectively. As such they act on vectors in Rn and Rk1+k2 both resulting in
vectors in Rk1+k2 . (This viewpoint will be used in the proof of Proposition 1.)
Second, S(t, P (t)) and R(t, P (t)) can be thought of as acting by multiplication
on n× (k1 + k2) and (k1 + k2)× (k1 + k2) matrices, respectively, thus resulting
in (k1 + k2) × (k1 + k2) matrices. (This will be used in (16).) So hypothesis
(1.2) makes sense in either interpretation.

3 Algebraic Descriptions of Riccati Equation (1)

In this section we give a representation and some interpretations for equation (1).
The representation is important to the proofs of our main results. We will as-
sume that (A,B, T ) satisfies (A1) and Π satisfies (A2), and P ∈ L1,∞(0, T ;Sn).

We first recall some properties of the matrix pseudoinverse [18]. For M ∈
Rk×n, there exists a unique generalized inverse matrix M† ∈ Rn×k that has the
following properties:

MM†M = M, M†MM† = M†, (MM†)′ = MM†, (M†M)′ = M†M. (8)

In addition, if M = M ′, then

M† = (M†)
′
, M ≥ 0 ⇔ M† ≥ 0, M†M = MM†.
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Conditions (1.1)-(1.3) in equation (1) have some algebraic interpretations.
Consider the following quadratic form q of (x, u1, u2) ∈ Rn ×Rk1 ×Rk2 .

q(x, u1, u2) =
(

x
u

)′(N S ′
S R

) (
x
u

)
= x′Nx + 2x′Su + u′Ru,

(9)

where N ∈ Sn, R ∈ Sk1+k2 and S ∈ R(k1+k2)×n are constant matrices and u =(
u1

u2

)
. In the following, we will sometimes use the “row notation” u = (u1, u2),

for an element of Rk1 ×Rk2 , and write q(x, u1, u2) = q(x, u). The notation is
chosen here to mimic that in equation (1).

Proposition 1 The following two statements are equivalent.
(1). N , R and S satisfy the conditions

N − S ′R†S = 0, (10.1)
Range[S] ⊂ Range[R], (10.2)
R11 ≥ 0,R22 ≤ 0. (10.3)

(10)

(2) For every x ∈ Rn, the quadratic function q(x, u1, u2) has a saddle point
(û1, û2) ∈ Rk1 ×Rk2 with value 0, that is, for all (u1, u2) ∈ Rk1 ×Rk2 , we have

q(x, û1, u2) ≤ 0 ≤ q(x, u1, û2). (11)

Proof. We first prove (2) ⇒ (1). Suppose (û1, û2) satisfies (11), then û =
(

û1

û2

)
is a critical point (depending on x) of q(x, u1, u2) in (9). So differentiating (9)
with respect to u, we have

Rû + Sx = 0. (12)

Since x is arbitrary, (10.2) holds. Condition (10.3) follows since (11) holds for
all (u1, u2) ∈ Rk1 ×Rk2 .

We can rewrite quadratic q(x, u1, u2) as a “sum of squares:”

q(x, u1, u2) = x′(N − S ′R†S)x + (u− û)′R(u− û). (13)

Indeed, by using (12): Rû = −Sx and (8): R = RR†R, we have (Rû)′ = −x′S ′,
and so

(u− û)′R(u− û) =u′Ru− 2u′Rû + û′Rû

=u′Ru + 2u′Sx + (Rû)′R†Rû

=u′Ru + 2u′Sx + x′S ′R†Sx.

So (13) follows by recalling the definition of q(x, u1, u2). By (11) and (13),

0 = q(x, û1, û2) = x′(N − S ′R†S)x

for all x. So (10.1) holds. This finishes the proof of sufficiency.
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Now we show that (1) ⇒ (2). Condition (10.2) implies that (12) has a
solution û ∈ R(k1+k2) for every x ∈ Rn. By (13) and (10.1) we have

q(x, u1, u2) = (u− û)′R(u− û).

Then condition (10.3) implies (11).2
Algebraic Interpretations of Riccati Equations. Now we apply Propo-

sition 1 to (
N S ′
S R

)
=

(
Ṗ (t) +N (t, P (t)) S ′(t, P (t))

S(t, P (t)) R(t, P (t))

)
, (14)

which defines the following quadratic of u =
(

u1

u2

)
∈ Rk1+k2 for each (t, x) ∈

[0, T ]×Rn:

x′[Ṗ (t) +N (t, P (t))]x + 2x′S(t, P (t))u + u′R(t, P (t))u. (15)

We obtain the following interpretations of equation (1) for each (t, x) ∈
[0, T ]×Rn:

(1) Condition (1.2) is equivalent to: quadratic (15) has a critical point û.
(2) Condition (1.3) is equivalent to: a critical point of (15) is a saddle point.
(3) Condition (1.1) says that the critical value is 0.

Condition (10.2) is also equivalent to the statement that the matrix equation

RK + S = 0 (16)

has a solution K̂ ∈ R(k1+k2)×n. In this case, û = K̂x satisfies (12) for every
x ∈ Rn. In fact, we can show that −R†S is such a solution. Indeed, since
S = −RK̂ and (8): RR†R = R, we have R

{
−R†S

}
= RR†RK̂ = RK̂ = −S.

Let K ∈ R(k1+k2)×n be arbitrary and u = Kx. Then

q(x, u) = q(x,Kx) = x′[N + 2K ′S + K ′RK]x.

On the other hand, q(x,Kx) is represented by (13) with û = K̂x. Since
x ∈ Rn is arbitrary, we obtain the following identity for K ∈ R(k1+k2)×n, which
may be verified directly.

N (P )− S ′(P )R(P )†S(P ) + (K − K̂)′R(P )(K − K̂)

= N + 2K ′S + K ′RK =
(

I
K

)′(N S ′
S R

) (
I
K

)
.

(17)

Now apply (17) to the matrix in (14) for every (t, x) ∈ [0, T ] × Rn. The
decomposition (4) implies that(

I
K

)′(N S ′
S R

) (
I
K

)
=

(
I
K

)′(
Ṗ (t) +N (t, P (t)) S ′(t, P (t))

S(t, P (t)) R(t, P (t))

) (
I
K

)
= Ṗ (t) +Q0(t, K) + L(t, K;P (t))

(18)
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where Q0(t, K) is a quadratic in K and L(t, K;P ) is linear in P , defined as
follows.

Q0(t, K) =
(

I
K

)′
T (t)

(
I
K

)
,

L(t,K;P ) =
(

I
K

)′
Π(t, P )

(
I
K

)
+ [A(t) + B(t)K]′ P + P [A(t) + B(t)K] ,

(19)
where B = (B1, B2) and T is defined in (5). From (17) and (18), we obtain the
following representations of (1).

Proposition 2 Suppose for each t ∈ [0, T ], P (t) ∈ L1,∞(0, T ;Sn) satisfies
(1.2). Then for each K ∈ R(k1+k2)×n, letting K(t, P ) = −R†(t, P )S(t, P ),
we have

Ṗ (t) +N (t, P (t))− S ′(t, P (t))R(t, P (t))†S(t, P (t))

= Ṗ (t) +Q0(t,K) + L(t,K;P )
− (K −K(t, P (t)))′R(t, P (t))(K −K(t, P (t))).

(20)

4 Comparison Theorems

Comparison theorems are a fundamental part of the theory of Riccati equations.
Such theorems are a basis for proving the existence of solutions and other prop-
erties of Riccati equations. For special cases of equation (1) (as mentioned in
§1), comparison theorems have been proved in many papers. See [10], [11],
[13], [14], [15], [17], [19], [20], [21] and references therein for more exposition on
comparison theorems and some of their applications. We prove two comparison
theorems (essentially equivalent) for equation (1).

First consider an equation of the form

Ṗ (t) + A′(t)P (t) + P (t)A(t) + π(t, P (t)) + N(t) = 0, P (T ) = G, (21)

where the operator π(·, ·) : [0, T ]× Sn → Sn. We will write π(·, ·) ≥ 0 to mean
that π(t, P ) ≥ 0 for all (t, P ) ∈ [0, T ]× Sn with P ≥ 0.

Proposition 3 Let A,G,N be as in (6) and π(·, ·) be Lipschitz. Then equation
(21) has a unique solution P ∈ L1,∞(0, T ;Sn). In addition, if π(·, ·) ≥ 0, G ≥ 0
and N(·) ≥ 0, then P (·) ≥ 0. Furthermore, if π(·, ·) ≥ 0, and either G > 0 or
N(·) > 0, then P (·) > 0.

Proof. Following the idea in [17] we let Φ(t, s) be the fundamental matrix of
A, that is, Φ(t, s)−1 = Φ(s, t) and ∂

∂tΦ(s, t) = −A(t)Φ(s, t). It follows that (21)
is equivalent to

P (t) = Φ(T, t)′GΦ(T, t) +
∫ T

t

Φ(s, t)′[π(s, P (s)) + N(s)]Φ(s, t)ds. (22)
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The Volterra equation (22) has a unique solution P , which can be found by
successive approximations; say, {Pm : m = 0, 1, 2, . . .} starting with P0 = 0. If
π(·, ·) ≥ 0, G ≥ 0 and N(·) ≥ 0, then Pm(·) ≥ 0 for all m ≥ 0, which implies
that P (·) = limm→∞ Pm(·) ≥ 0. If either G > 0 or N(·) > 0, then for all
t ∈ [0, T ],

P (t) ≥ Φ(T, t)′NΦ(T, t) +
∫ T

t

Φ(s, t)′G(s)Φ(s, t)ds > 0. 2

Theorem 1 (Comparison) For i = 1, 2, let Pi ∈ L1,∞(0, T ;Sn) be solutions
to equation (1) associated (A,B, Ti,Πi), which satisfy (A1) and (A2). Suppose
Π1(·, ·) ≤ Π2(·, ·), T1(·) ≤ T2(·) and P1(T ) ≤ P2(T ). Then P1(·) ≤ P2(·). In
addition, P1(·) < P2(·) if one of the following conditions holds.

(1) T2−T1 =
(

N2 −N1 0
0 0

)
(i.e., T2 and T1 are different at only the (1, 1)

entry) and N2(·)−N1(·) > 0.
(2) P1(T ) < P2(T ).

Proof. For i = 1, 2, let Si(Pi), Ri(Pi), Ki(Pi), Qi0(K),Li(K;Pi) be the no-
tations defined in (2), Proposition 2 and (19) with (A,B, Ti,Πi) (with t sup-
pressed). Using representation (20) for the equations of P1 and P2, we obtain
for arbitrary K ∈ R(k1+k2)×n,

0 = Q20(K)−Q10(K) + Ṗ2 − Ṗ1 + L2(K;P2)− L1(K;P1) + M(K) (23)

where M(K) is the difference of “square” terms in (20), that is

M(K) =(K −K1(P1))′R1(P1)(K −K1(P1))
− (K −K2(P2))′R2(P2)(K −K2(P2)).

A key step of the proof is to choose K such that M(K) ≥ 0. Write K1(P1) =(
K11(P1)
K12(P1)

)
and K2(P2) =

(
K21(P2)
K22(P2)

)
and choose K =

(
K21(P2)
K12(P1)

)
. It follows

that

K −K1(P1) =
(
K21(P2)
K12(P1)

)
−

(
K11(P1)
K12(P1)

)
=

(
K21(P2)−K11(P1)

0

)
.

Similarly K −K2(P2) =
(

0
K12(P1)−K21(P2)

)
. Using the notation [·]i,j to de-

note the (i, j) entry of a matrix, we know from condition (1.3) that [R1(P1)]1,1 ≥
0 and [R2(P2)]2,2 ≤ 0. It follows that

M(K) =(K21(P2)−K11(P1))′[R1(P1)]1,1(K21(P2)−K11(P1))
− (K12(P1)−K22(P2))′[R2(P2)]2,2(K12(P1)−K22(P2)) ≥ 0.

Denote P (·) = P2(·)− P1(·). Then P (T ) ≥ 0 and (23) implies that P satisfies

0 =
(

I
K

)′
[T2 − T1 + Π2(P + P1)−Π1(P1)]

(
I
K

)
+ Ṗ + (A + BK)′P + P (A + BK) + M(K).

(24)
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Now we apply Proposition 3 to (24) with N = M(K)+
(

I
K

)′
[T2 − T1]

(
I
K

)
and Π(·) = Π2(· + P1) − Π1(P1). Since M(K) ≥ 0 and T2(·) ≥ T1(·), we
have N(·) ≥ 0. In addition, since Π2(·, ·) ≥ Π1(·, ·) and Π1 is monotonically
increasing, we have, for every Q ≥ 0,

Π(t,Q) = Π2(t,Q + P1)−Π1(t, P1) ≥ Π1(t, Q + P1)−Π1(t, P1) ≥ 0.

So Π(·, ·) ≥ 0. By Proposition 3, P (·) ≥ 0.
Under condition (1), we have for t ∈ [0, T ],

N = N2 −N1 + M(K) ≥ N2 −N1 > 0.

So under either condition (1) or (2), P (·) = P2(·)− P1(·) > 0 by Proposition 3.
2

The comparison theorem is often stated in the terms of upper and lower so-
lutions. We say that P ∈ L1,∞(0, T ;Sn) is a lower [upper, respectively] solution
of (1) if it satisfies conditions (1.2) and (1.3) and the following inequalities for
all t ∈ [0, T ]:

Ṗ (t) +N (t, P (t))− S ′(t, P (t))R(t, P (t))†S(t, P (t)) ≥ 0; P (T ) ≤ G.

[and, respectively,

Ṗ (t) +N (t, P (t))− S ′(t, P (t))R(t, P (t))†S(t, P (t)) ≤ 0; P (T ) ≥ G]

(25)

The terminology may seem improperly named, but it is simply a reflection of
the fact that the problems being solved are final value rather than initial value
problems. Finally, if one of the inequalities in (25) is strict, then we say P is a
strict lower (or upper) solution.

For example, it is easy to see that P (·) = 0 is a lower [an upper] solution of
(1) if and only if for all t ∈ [0, T ],

R11(t) ≥ 0, R22(t) ≤ 0, Range[S(t)] ⊂ Range[R(t)];

N(t)− S′(t)R†(t)S(t) ≥ 0, G ≥ 0.

[N(t)− S′(t)R†(t)S(t) ≤ 0, G ≤ 0, respectively.]

(26)

Using Theorem 1, we now prove the following comparison result.

Theorem 2 (Comparison) Suppose (P1, P2) is a pair of lower-upper solu-
tions of (1). Then P1(·) ≤ P2(·). If either P1 is a strict lower, solution or P2

is a strict upper solution, then P1(·) < P2(·).

Proof. The assumption implies that

Ṗi(t) +N (t, Pi(t))− S ′(t, Pi(t))R(t, Pi(t))†S(t, Pi(t)) + Hi(t) = 0.

for some matrices H1(·) ≤ 0, H2(·) ≥ 0 and for all t ∈ [0, T ]. Apply Theorem

1 with T2 =
(

N + H2 S′

S R

)
and T1 =

(
N + H1 S′

S R

)
. Since T2 ≥ T1 and
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P1(T ) ≤ G ≤ P2(T ), P1(·) ≤ P2(·) by Theorem 1. The second conclusion
follows from the second conclusion of Theorem 1. 2

As a corollary, we obtain the following result.

Corollary 1 Suppose condition (26) holds. Then the solution P of (1), if it
exists, is positive [negative, respectively] semidefinite.

5 Existence Results

Upper and lower solutions can usually be found more easily than solutions. In
this section we give a condition for the existence of a solution to equation (1) in
terms of upper and lower solutions. We consider solutions P ∈ L1,∞(0, T ;Sn)
that satisfy the strict inequalities in (1.3), that is, for t ∈ [0, T ],

Ṗ (t) +N (t, P (t))− S ′(t, P (t))R(t, P (t))†S(t, P (t)) = 0, (27.1)
P (T ) = G ∈ Sn,

R11(t) + π11(t, P (t)) > 0; R22(t) + π22(t, P (t)) < 0. (27.2)
(27)

We assert first that if P satisfies (27.2), then the weighting matrix R(P (t))
is invertible. The invertibility of R(t, P (t)) can be seen by writing its block

matrix form, for convenience, as R(P (t)) =
(

A B
B′ C

)
, with A and C being

square matrices, A > 0, and C < 0. If
(

x
y

)
is in the kernel of R(P (t)),

then Ax + By = 0 so that x = −A−1By. Then B′x + Cy = 0 can be
rewritten as (C − B′A−1B)y = 0. But C − B′A−1B < 0, so y = 0 and it

follows that
(

x
y

)
= 0. Thus R(t, P (t)) is invertible which then, of course,

implies R(t, P (t))−1 = R(t, P (t))†. In this case, conditions (1.2) and (1.3) are
automatically satisfied.

The notion of lower and upper solutions for (27) is defined as in (25). We
have

Theorem 3 There exists a solution P ∈ L1,∞(0, T ;Sn) to (27) if and only if
(27) has a pair of lower-upper solutions (P1, P2).

Proof. The necessity is trivial by taking P = P1 = P2. We prove the sufficiency.
Since P1(T ) ≤ G ≤ P2(T ) and P1 and P2 satisfy (27.2), it follows that

R11(T ) + π11(G) ≥ R11(T ) + π11(P1(T )) > 0,

R22(T ) + π22(G) ≤ R22(T ) + π22(P2(T )) < 0.

So (27.2) holds at t = T with P (T ) = G. The local existence theory of ODE
implies that equation (27.1) has a solution P that exists in a maximal interval
(τ, T ]. Theorem 2 implies that P1(t) ≤ P (t) ≤ P2(t) in (τ, T ]. This implies that
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P satisfies (27.2). By using the inequalities in (27.2) and equation (27.1), we
see that Pτ ≡ limt→τ+ P (t) exists and P1(τ) ≤ Pτ ≤ P2(τ). It turns out that
(27.2) holds for P (t) with t ∈ [τ, T ]. So P can be extended to a solution of
(27.1) that satisfies (27.2) on [τ, T ]. We claim that τ = 0. For if τ > 0, then P
could be extended further left beyond τ by the local existence theory of ODE.
This would contradict the maximality of (τ, T ]. Therefore equation (27.1) has
a solution on [0, T ] satisfying (27.2). 2

If the lower solution P1 and upper solution P2 satisfy (1.2) and (1.3), instead
of (27.2), then it is an open question whether equation (1) has a solution. In
the proof of Theorem 3 we used the following three properties of solutions to
(1) that satisfy (27.2).

(a) If P1 and P2 satisfy (27.2), then every function between P1 and P2 also
satisfies (27.2).

(b) The local existence of a solution of (27).
(c) Every solution of (27) on an interval (τ ′, τ ] ⊂ [0, T ] can be extended to

[τ ′, τ ].
For equation (1.1) with (1.2) and (1.3), (a) can be verified under appropri-

ate kernel conditions, as done in [15] for rational differential equations arising
from stochastic controls. Properties (b) and (c) are not known due to the fact
that the generalized inverse R(t, P (t))† is not continuous in its argument P (t).
For this reason, the existence result Corollary 4.6 in [15] may need additional
assumptions. We hope to address this question in a future study.

We end this section with the following property of solutions to (27).

Proposition 4 If (P1, P2) is a pair of lower and upper solutions of (27), then
the set of solutions, X, of (27) satisfying P1 ≤ X ≤ P2, contains a minimal
solution Z and a maximal solution Y . That is,

Z(·) ≤ X(·) ≤ Y (·)

for all such solutions X.

Proof. Let Y and Z be the solutions with Y (T ) = P2(T ) and Z(T ) = P1(T ).
Now if X is any solution of (27) satisfying P1(T ) ≤ X(T ) ≤ P2(T ), then we
have Z(·) ≤ X(·) ≤ Y (·) by Theorem 2. 2

6 Monotonicity and existence of constant solu-
tions

In this section we study the monotonicity of a solution of (1) when all coefficient
matrices are periodic or constant in t. As applications, we give conditions for
the existence of periodic or constant solutions to (1).

11



When all coefficient matrices are constant, the algebraic Riccati equation for
P ∈ Sn associated with (1) is

E(P ) ≡ N (P )− S ′(P )R(P )†S(P ) = 0; (28.1)
Range [S(P )] ⊂ Range[R(P )]; (28.2)
R11 + π11(P ) ≥ 0; R22 + π22(P ) ≤ 0, (28.3)

(28)

where in analogy with (2)

N (P ) = PA′ + AP + π00(P ) + N ;

S(P ) =
(

B′
1P + π10(P ) + S1

B′
2P + π20(P ) + S2

)
;

R(P ) =
(

R11 + π11(P ) R12 + π12(P )
R21 + π21(P ) R22 + π22(P )

)
.

Theorem 4 (Monotonicity) Suppose all of the coefficients in (1) are con-
stant and P (t) is the solution of (1) in (s, T ] with G = P (T ). Suppose that

Range[S(P )] ⊂ Range[R(P )],
R11 + π11(G) ≥ 0;R22 + π22(G) ≤ 0.

Then we have
(i) E(G) ≥ 0 if and only if P (t) is decreasing in (s, T ].
(ii) E(G) ≤ 0 if and only if P (t) is increasing in (s, T ].

Proof. (i) Since E(G) ≥ 0, G is a constant lower solution to (1) on (−∞, T ]. By
Theorem 2, P (t) ≥ G, for all t ∈ (s, T ]. For any number τ ∈ (0, T − s), define
P∗ : (s + τ, T + τ ] → Sn by P∗(t) = P (t − τ). Since (1) is autonomous, P∗(t)
is also a solution to (1) with P∗(T ) = P (T − τ) ≥ G = P (T ). By Theorem 2
again, P∗(t) ≥ P (t) for t ∈ (s + τ, T ], or equivalently, P (t− τ) ≥ P (t) for every
τ ∈ (0, T − s). In other words, P (t) is decreasing in (s, T ] as a function of t.
Part (ii) is proved similarly. 2

Extending terminology to the algebraic case, we will call P ∈ Sn a lower
solution to the algebraic Riccati equation (28) in case E(P ) ≥ 0 and an upper
solution in case E(P ) ≤ 0. Using this terminology, Theorem 4 can be rephrased
by saying P (·) is decreasing if and only if the terminal value G is a lower solution.
And similarly P (·) is increasing if and only if the terminal value G is an upper
solution.

Theorem 4 implies that if P is a bounded solution to (1) on (−∞, T ] with
G = P (T ) being an upper or lower solution to (1), then P∞ ≡ limt→−∞ P (t)
exists. By combining Theorem 3 and Theorem 4, we obtain a necessary and
sufficient condition for existence of solutions to the following equation:{

E(P ) ≡ N (P )− S ′(P )R(P )†S(P ) = 0; (29.1)
R11 + π11(P ) > 0; R22 + π22(P ) < 0, (29.2)

(29)

Note again that (29.2) is a stronger assumption than (28.2) and (28.3).
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Theorem 5 Equation (29) has a solution P ∈ Sn if and only if it has an upper
solution Y and a lower solution Z such that Y ≥ Z. The set [Z, Y ] = {P ∈
Sn |Z ≤ P ≤ Y } contains a minimal solution and maximal solution.

Proof. The necessity is obvious by choosing Y = Z = P . For the sufficiency,
consider equation (27) with terminal values P (T ) = Y and Z, respectively.
Since Y is an upper solution and Z is a lower solution to (27) in (−∞, T ],
by Theorem 3, there exist solutions PY (·) and PZ(·) on (−∞, T ] to (27) such
that PY (T ) = Y , PZ(T ) = Z and Y ≥ PY (·) ≥ PZ(·) ≥ Z. By Theorem
4, both PY (·) and PZ(·) are monotone. So both Y∞ = limt→−∞ PY (t) and
Z∞ = limt→−∞ PZ(t) exist. Clearly Y∞ and Z∞ are constant solutions to (27)
satisfying Y ≥ Y∞ ≥ Z∞ ≥ Z. It follows that

R11 + π11(Y∞) ≥ R11 + π11(Z∞) ≥ R11 + π11(Z) > 0,

R22 + π22(Z∞) ≤ R11 + π11(Y∞) ≤ R11 + π11(Y ) < 0. 2

Lastly consider the case in which all the coefficients of (1.1) are periodic
with period θ.

Theorem 6 Suppose the coefficients of (1.1) are continuous and θ-periodic.
Equation (27) has a θ-periodic solution P if and only if (27) has an upper
solution Y and a lower solution Z on [T − θ, T ] such that

Z(T ) ≤ Z(T − θ) ≤ Y (T − θ) ≤ Y (T ).

Proof. The necessity is obvious by letting Y = Z = P . To show the sufficiency,
we first show that for k = 0, 1, 2, . . ., (27) has a solution Pi on [T − θ, T ] with
the following properties, for i = 1, 2, . . . ,

P0(T ) = Z(T ), Pi+1(T ) = Pi(T − θ),
Z(t) ≤ Pi(t) ≤ Pi+1(t) ≤ Y (t) for t ∈ [T − θ, T ].

The existence of a solution P0(t) with Z(t) ≤ P0(t) ≤ Y (t) for t ∈ [T − θ, T ]
is guaranteed by Theorem 3. Since

Z(T ) ≤ Z(T − θ) ≤ P0(T − θ) ≤ Y (T − θ) ≤ Y (T ),

the existence of P1(t) with Z(t) ≤ P1(t) ≤ Y (t) for t ∈ [T − θ, T ] is guaranteed,
again by Theorem 3. Since both P1(t) and P0(t) are solutions to (27) with
P1(T ) = P0(T−θ) ≥ P0(T ), the comparison theorem implies that P0(t) ≤ P1(t).
The cases for i ≥ 1 are proved by induction.

So {Pi(·)} is a monotonically increasing bounded sequence. Therefore,

P∞(t) = lim
i→∞

Pi(t) exists for each t ∈ [T − θ, T ].

The property Pi+1(T ) = Pi(T − θ) implies that P∞(T ) = P∞(T − θ), that
is, P (t) is θ-periodic. Since each Pi(t) satisfies (27) and Z(t) ≤ Pi(t) ≤ Y (t)
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for t ∈ [T − θ, T ], the limit P∞(t) satisfies (27) and Z(t) ≤ P∞(t) ≤ Y (t) for
t ∈ [T − θ, T ]. Extending P∞(·) to (−∞, T ] periodically, we get a periodic
solution of (27).

It is a typical argument to show that P∞(·) satisfies equation (27). Equation
(27) for Pi(·) can be written as d

dtPi(t) = −E(t, Pi(t)), where

E(t, P ) = N (t, P )− S ′(t, P )R(t, P )−1S(t, P ).

We show that E(t, Pi(t)) is a bounded function uniformly for i ≥ 0. Write,

R(t, Pi(t)) = (Rjk(t) + πjk(Pi(t)))1≤j,k≤2 =
(

A B
B′ C

)
.

where
A = R11(t) + π11(t, Pi(t)) ≥ R11(t) + π11(t, Z(t))
C = R22(t) + π22(t, Pi(t)) ≤ R22(t) + π22(t, Y (t))

Since Y and Z satisfy (27.2) and the coefficients are continuous, we see that
A−1 and C−1 (and hence (C − B′A−1B)−1) are bounded functions uniformly
for i ≥ 0. By the inverse formula(

A B
B′ C

)−1

=
(

I 0
−B′A−1 I

) (
A−1 0
0 (C −B′A−1B)−1

) (
I −A−1B
0 I

)
we see that R(t, Pi(t))−1 is bounded uniformly for i ≥ 0. Consequently we know
that E(t, Pi(t)) is a bounded function uniformly for i ≥ 0. Therefore for all r
and r + ∆r ∈ [T − θ, T ], we have

Pi(t)|r+∆r
r = −

∫ r+∆r

r

E(t, Pi(t))dt.

Letting i →∞, we have that

P∞(t)|r+∆r
r = −

∫ r+∆r

r

E(t, P∞(t))dt

Dividing both sides by ∆r and taking limit as ∆r → 0, we see that P∞(t)
satisfies (27) on [T − θ, T ]. 2

Note that the solution P∞(t) obtained in the proof of Theorem 6 is the
minimal θ-periodic solution between Z and Y on [T − θ, T ]. If we start with
P0(T ) = Y (T ), then the solution P∞(·) will be the maximal θ-periodic solution
between Z and Y on [T − θ, T ].

In [14, Theorems 3.9 & 3.11], results similar to Theorem 6 are proved for
equation (1) among periodic solutions P (t) such that R(t, P (t)) > 0.
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