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Abstract

A multiplier rule is proved for constrained minimization problems defined on a metric spaces. The proof requires a generalization
of the values of a derivative in the classical case that the metric space is a normed space.
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1. Introduction

Lagrange multiplier rules form a powerful tool for deriving necessary conditions for solutions of constrained mini-
mization problems. Most of the existing multiplier rules are established for optimization problems defined on Banach
spaces, on which appropriate notions of differentiability are well-defined; see [6,7] for example. One of the excep-
tions is an abstract multiplier rule for a mathematical programing problem using the notion of cone differential in [4,
Theorem 13.1, Section II.13]. In this paper we prove a multiplier rule for a general constrained optimization problem
formulated on a metric space. The motivation for this is a proof of the maximum principle for an optimal control
problem with quite general constraints [10]. A key idea in the proof of the multiplier rule is to apply the Ekeland
variational principle to a penalized objective function with no constraint. This is a typical approach in optimization
problems; see [3] and [8] for example.

In Section 2, we define the notion of a set of sequential strict “derivates” for a map on a metric space and prove the
multiplier rule (Theorem 6) for minimizers of a general constrained optimization problem. The notion of sequential
strict derivate is a generalization of the value of a classical derivative on a Banach space as well as sequential and
directional derivatives. It enables us to derive desired inequalities satisfied by the multipliers for the optimization
problem whose existence is guaranteed by the subdifferential of a distance function. This form of the multiplier
theorem appears to be new even when the metric space is a closed subset of a Banach space. In this latter case, there
are many related interesting works on nondifferentiable multiplier rules; see [2,5,9,11,13–17] and [18].
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2. A general multiplier rule

To formulate the general optimization problem on a metric space let (W, d) be a complete metric space and
(Z,‖ · ‖) be a Banach space. Let (J (·), S(·)) :W→ R × Z be continuous maps and Q ⊂ Z a subset. Consider

Problem.

minimize J (w), w ∈W with S(w) ∈ Q. (1)

If w0 ∈W , S(w0) ∈ Q and J (w0) � J (w) for all w ∈W with S(w) ∈ Q, then we say that w0 is a minimum point of
J (·) onW subject to S(·) ∈ Q.

To establish a multiplier rule for the Problem above, appropriate notions of derivatives have to be defined for maps
from a metric space to a Banach space.

In the rest of this section, (W, d) is a complete metric space and X,Y , and Z are Banach spaces with norms all
denoted by ‖ · ‖. We start by recalling the notions of directional derivatives and strict differentiability of maps between
Banach spaces.

Definition 1. (a) The directional derivative g′(x0;v) of a map g :X → Y at x0 ∈ X in the direction of v ∈ X is

g′(x0;v) = lim
t→0+

1

t

[
g(x0 + tv) − g(x0)

]
.

(b) We say that g is strictly differentiable at x0 if there exists a function ω(·;x0) : R
+ = [0,∞) → R

+ with
ω(δ;x0) → 0 as δ ↓ 0 and a linear and bounded operator, denoted by Dg(x0), from X to Y such that∥∥g(x) − g(y) − 〈

Dg(x0), x − y
〉∥∥ � ωg(δ;x0)‖x − y‖

for all x, y ∈ x0 + δB, where B is the unit ball in X centered at 0. Sometimes the function ωg(δ;x0) will be written
simply as ω(δ).

The notation 〈·,·〉 will often be used to denote an operator acting on a vector, so 〈Dg(x0), x − y〉 replaces the
function notation Dg(x0)(x − y). Note that the more usual definition of strict differentiability is that the difference
quotient ‖g(x) − g(y) − 〈Dg(x0), x − y〉‖/‖x − y‖ → 0 as x → x0 and y → x0 and so does not involve the function
ω explicitly; see [1] or [12] for example. But the two definitions are equivalent and notion of ω will be useful for us
later.

We next wish to define a derivative of a map S :W→ X from a metric space to a Banach space. However since
W does not have a linear structure, the derivative, a linear operator fromW to X, does not make sense, so we instead
define three related objects that generalize the familiar objects from Definition 2. The first notion will generalize the
directional derivative where “direction” is replaced by a convergent sequence wi → w. We will write wi → w inW
for “wi ∈W and wi → w as i → ∞.” (The sequence indices i, j are always assumed to go to ∞.) For the other two
objects we will settle for defining what would be the value of a derivative in the classical case of a map between two
Banach spaces. We call the resulting object in X a derivate of the map S. The special case in whichW is a Banach
space will be discussed in Proposition 1.

Definition 2. (a) The sequential derivate of S along wi → w inW is

DS(w0;wi) = lim
i→∞

S(wi) − S(w)

d(wi,w)
,

if it exists. The notation is chosen to be reminiscent of the directional derivative in a Banach space. We have resisted
the urge to use the more complete but cumbersome DS(w0; {wi}∞i=1).

(b) For a given δ � 0, we say that x ∈ X is a sequential δ-derivate of S at w if there exists a sequence di ↓ 0 and
wi ∈W such that d(w,wi) � di and

lim sup
i→∞

∥∥∥∥S(wi) − S(w)

di
− x

∥∥∥∥ � δ. (2)

The set of all δ-derivates of S at w is denoted by DδS(w).



Author's personal copy

1066 M. McAsey, L. Mou / J. Math. Anal. Appl. 337 (2008) 1064–1071

(c) We say that x ∈ X is a sequential strict derivate of S at w0 if there exists a function δ :W → R
+ such that

δ(w) → 0 as d(w,w0) → 0 and for all w ∈W ,

x ∈ Dδ(w)S(w).

The set of all sequential strict derivates x is denoted by DsS(w0).

The sequential δ-derivate and sequential strict derivate have similarities with the notions of (the values of) sequen-
tial, directional, and strict derivatives on Banach spaces (Proposition 1 below) and possess a desirable property for
proving the multiplier rule. The use of the sequence {di} in the denominator rather than the sequence of distances
{d(wi,w)} gives the needed flexibility in determining the set DsS(w0). This flexibility is useful in applications, and
is used in a proof of the maximum principle in optimal control [10].

Here are three elementary examples showing the kinds of sets that occur as DδS(w) and DsS(w0)—at least in the
scalar case. Note that it follows from the definition that zero is always in DsS(w0).

Example 1. (a) Let f ∈ C1(R). Then for any w,w0 ∈ R,

Dδf (w) = [−(∣∣f ′(w)
∣∣ + δ

)
,
∣∣f ′(w)

∣∣ + δ
]

and Dsf (w0) = [−∣∣f ′(w0)
∣∣, ∣∣f ′(w0)

∣∣].
(b) (Modified absolute value function)

f (w) =
{

αw w � 0,

βw w < 0,
with β < 0 < α.

By example (a), for w > 0,Dδf (w) = [−α − δ,α + δ] and similarly for w < 0, Dδf (w) = [−|β| − δ, |β| + δ]. Then
D0f (0) = [0,max{|β|, α}] while Dsf (0) = [0,min{|β|, α}].

(c) Let f (x) = x sin(1/x). Choosing wk to be the positive relative minimizers of sin(1/x), wk = 2
(2k+1)π

so that

wk ↓ 0 as k → 0, and f ′(wk) = 0. So from example (a) Dδf (wk) = [−δ, δ]. Therefore Dsf (0) = {0}.

WhenW is a Banach space and wi = w + div with di ↓ 0 and ‖v‖ �= 0, then the sequential derivate is related to
the classical directional derivative by

DS(w;w + div) = S′(w;v/‖v‖). (3)

The relationship between sequential strict derivates on a metric space and strict derivatives on a Banach space is
given in the next proposition. It shows that for a strictly differentiable function, the set of all strict derivates, DsS(w0),
is essentially a set of values of the strict derivative.

Proposition 1. Let S be a map between two Banach spacesW and X. (a) If S is strictly differentiable (in the Banach
space sense) at w0, then for any v ∈W with ‖v‖ � 1,〈

DS(w0), v
〉 ∈ DsS(w0). (4)

(b) IfW is finite dimensional, then

DsS(w0) = {〈
DS(w0), v

〉
: v ∈W with ‖v‖ � 1

}
.

(c) A necessary and sufficient condition that x ∈ DδS(w) is that there exists a sequence di ↓ 0 and a sequence
vi ∈W with ||vi || � 1 such that

lim sup
i→∞

∥∥∥∥S(w + divi) − S(w)

di
− x

∥∥∥∥ � δ. (5)

Proof. (a) Fix v ∈W, ‖v‖ � 1. To show 〈DS(w0), v〉 ∈ DsS(w0) let δ :W→ R
+ be defined by δ(w) = ω(‖w −

w0‖), where ω is the function from the definition of strict derivative. Then δ satisfies the conditions of the function
in the definition of (metric space) sequential strict derivate. We need to show next that for any w ∈W , we have
〈DS(w0), v〉 ∈ Dδ(w)S(w). For each w ∈W , let wi = w +div, ‖v‖ � 1, with any sequence di ↓ 0. Then ‖wi −w‖ =
di‖v‖ � di . It follows from the definition of sequential strict derivate, as i → ∞,
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∥∥∥∥S(wi) − S(w)

di
− 〈

DS(w0), v
〉∥∥∥∥ =

∥∥∥∥S(w + div) − S(w)

di
− 〈

DS(w0), v
〉∥∥∥∥

� ω
(‖w − w0‖ + di

)‖v‖ � ω
(‖w − w0‖ + di

)
.

Taking the lim sup of this expression we get

lim sup
i→∞

∥∥∥∥S(wi) − S(w)

di
− 〈

DS(w0), v
〉∥∥∥∥ � lim sup

i→∞
ω

(‖w − w0‖ + di
) = ω

(‖w − w0‖
) = δ(w).

We have shown that 〈DS(w0), v〉 ∈ Dδ(w)S(w) with δ(w) = ω(‖w − w0‖) → 0. That is, 〈DS(w0), v〉 ∈ DsS(w0).
(b) Since this fact is not used below, we leave the proof to interested readers.
(c) If (5) holds, then clearly x ∈ DδS(w). Conversely, if x ∈ DδS(w), then (2) holds for some sequence wi → w.

Let di = ‖wi − w‖ and vi = (wi − w)/di ∈W , then ‖vi‖ = 1, di → 0 and (5) holds. �
We show some properties of δ-derivates in the next two propositions. The first one states an implication of the

Ekeland variational principle. The second is a version of the chain rule for δ-derivates and directional derivatives.

Proposition 2. Let (W, d) be a complete metric space, F :W→ (−∞,∞] proper, lower-semicontinuous, bounded
from below, and w0 ∈W with F(w0) < ∞. Then for every λ > 0, there exists w ∈W such that

F(w) + λd(w,w0) � F(w0),

F (w) < F(w) + λd(w,w) for all w ∈W \ {w}. (6)

In addition, every x ∈ DδF(w) satisfies x � −λ − δ.

Proof. The display (6) is the well-known Ekeland variational principle; it is proved in many references; see [3] or
[8] for example. For the last sentence, if x ∈ DδF(w), then there exists a sequence wi ∈W and di ↓ 0 such that
d(wi,w) � di and (2) holds with w = w. From (5) and (6) we have

δ � lim sup
i→∞

F(wi) − F(w)

di
− x � −λ

d(wi,w)

di
− x � −λ − x.

This implies that x � −λ − δ. �
Proposition 3. (a) Let S :W→ X. Let g :X → Y be Lipschitz near S(w) with rank K . If v ∈ DδS(w) for some δ � 0
and g′(S(w);v) exists, then

g′(S(w);v) ∈ DδK(g ◦ S)(w). (7)

In particular, if v = DS(w;wi) where wi → w inW and g′(S(w);v) exist, then D(g ◦ S)(w;wi) exists and

D(g ◦ S)(w;wi) = g′(S(w);v)
. (8)

(b) IfW in (a) is a Banach space and g′(S(w);S′(w;u)) exists for some u ∈W , then

(g ◦ S)′(w;u) = g′(S(w);S′(w;u)
)
. (9)

Proof. (a) Since v ∈ DδS(w), there exists di ↓ 0 and wi ∈W with d(w,wi) � di such that

lim sup
i→∞

∥∥∥∥S(wi) − S(w)

di
− v

∥∥∥∥ � δ.

Because g is Lipschitz with rank K near S(w) and g′(S(w);v) exists, we get

lim sup
i→∞

∥∥∥∥g(S(wi)) − g(S(w))

di
− g′(S(w);v)∥∥∥∥ � lim sup

i→∞

∥∥∥∥g(S(wi)) − g(S(w) + div)

di

∥∥∥∥
+ lim sup

i→∞

∥∥∥∥g(S(w) + div) − g(S(w))

di
− g′(S(w);v)∥∥∥∥

� lim sup
i→∞

K

∥∥∥∥S(wi) − S(w)

di
− v

∥∥∥∥ + 0 � Kδ.
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Equality (8) follows basically by repeating the preceding calculation proving (7). Indeed let di = d(wi,w), then

lim
i→∞

∥∥∥∥S(wi) − S(w)

di
− v

∥∥∥∥ = 0 for v = DS(w;wi).

Repeat the rest of the calculation replacing the “limit supremum” with “limit” and end with both limits equal to zero.
To prove (b), note that since W is a Banach space if ‖u‖ = 1, then equality (9) follows from (8) and the relation

between directional derivatives given in (3) with v = S′(w,u). Since (9) is homogeneous in u, it holds for all u. �
Let Q ⊂ Z be a given subset, as in the Problem stated in Section 1. The distance function dQ(·) of Q plays a crucial

role in the multiplier rule, where

dQ(z) = inf
z′∈Q

‖z − z′‖.

Suppose that Q is closed and convex, then dQ(z) is Lipschitz with rank 1 and dQ is convex. Therefore, the directional
derivative d ′

Q(x0;v) exists for (x0, v) ∈ Z × Z because 1
t
[dQ(x0 + tv) − dQ(x0)] is increasing in t ∈ (0,∞). Recall

that the subdifferential (in the sense of convex analysis) of dQ(z) is defined as the set

∂dQ(z) = {
ζ ∈ Z∗ | dQ(η) − dQ(z) � 〈ζ, η − z〉, ∀η ∈ Z

}
. (10)

The following lemma collects some fundamental properties of dQ(·). For a proof, see [8, Proposition 3.11], for
example.

Lemma 4. Suppose that Q ⊂ Z is closed and convex. Then

(1) dQ(z) is convex and Lipschitz with rank 1.
(2) d ′

Q(z; ξ) is positively homogeneous and subadditive in ξ .
(3) ∂dQ(z) is nonempty, convex and weak∗-compact and

∂dQ(z) = {
ζ ∈ Z∗ | 〈ζ, ξ 〉 � d ′

Q(z; ξ) for all ξ ∈ Z
}
.

(4) d ′
Q(z; ξ) = max{〈ζ, ξ 〉 | ζ ∈ ∂dQ(z)}.

(5) The map z → ∂dQ(z) is pseudo-continuous on Z in the sense that if zα ∈ Z and ζα ∈ ∂dQ(zα) are two nets with

zα
s→ z, ζα

∗→ ζ , then ζ ∈ ∂dQ(z). (The nets converge strongly, i.e., in norm, and weak-* respectively.)
(6) For any z /∈ Q, |ζ |Z∗ = 1 for all ζ ∈ ∂dQ(z).
(7) Finally if Z has a strictly convex dual Z∗, then ∂dQ(z) consists of one point for each z /∈ Q.

We need another lemma for the proof of Theorem 6 to guarantee that the multipliers are nontrivial. Recall that a
subset Q of a Banach space Z is said to be finite codimensional in Z if there exists a point z0 in the convex closure of
Q such that the closed subspace spanned by Q − z0 ≡ {q − z0 | q ∈ Q} is a finite-codimensional subspace of Z and
the convex closure of Q − z0 has a nonempty interior in this subspace. See [8, pp. 142, 135], for the proof of the next
lemma.

Lemma 5. Let Q ⊂ Z be finite codimensional in Z and {fk} ⊂ Z∗ satisfy

‖fk‖Z∗ � δ > 0, fk
∗→ f ∈ Z∗,

〈fk, z〉 � −εk, ∀z ∈ Q, k � 1,

where εk → 0. Then f �= 0.

Finally we state and prove the multiplier rule. Although the domain of the objective is a metric space, the conclu-
sions have a classical flavor: at least one multiplier is not zero, the “derivative of the Lagrangian” is nonnegative, and
lastly the multiplier determines a support linear functional for the translate Q − S(w0).
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Theorem 6 (Multiplier rule). Suppose that w0 is a minimum point of J (·) subject to S(·) ∈ Q. Suppose that Z has
strictly convex dual Z∗ and Q ⊂ Z is closed, convex and finite codimensional. Then there exists (ψ0,ψ) ∈ R

+ × Z∗
such that⎧⎪⎨

⎪⎩
|ψ0|2 + ‖ψ‖2

Z∗ > 0, (11.1)

ψ0z0 + 〈ψ,z〉 � 0 for all (z0, z) ∈ Ds(J,S)(w0), (11.2)

〈ψ,η − S(w0)〉 � 0 for all η ∈ Q. (11.3)

Proof. The first step in the proof is to use the Ekeland variational principle to produce minimizers of approximating
functionals Jε . These will yield approximations to the required multipliers (ψ0,ψ) and prove (11.3).

We may assume that J (w0) = 0. Fix an ε > 0 and consider the penalized functional

Jε(w) =
√

max
{
J (w) + ε,0

}2 + dQ

(
S(w)

)2

for w ∈W . Note that Jε(w) is the distance from (J (w) + ε,S(w)) to Q0 × Q, where Q0 = (−∞,0], that is,

Jε(w) = dQ0×Q

(
J (w) + ε,S(w)

) =
√

dQ0

(
J (w) + ε

)2 + dQ

(
S(w)

)2
, (12)

where dQ0(y
0) = max{y0,0} for y0 ∈ R. By the Ekeland variational principle in Proposition 2 with λ = √

ε, there
exists wε ∈W such that{

Jε(wε) + √
εd(wε,w0) � Jε(w0), (13.1)

Jε(wε) < Jε(w) + √
εd(w,wε) for all w ∈W \ {wε}. (13.2)

Note that(
J (wε) + ε,S(wε)

)
/∈ Q0 × Q. (14)

Indeed, if S(wε) /∈ Q, then (14) is automatic, and if S(wε) ∈ Q, then J (wε) � J (w0) � 0 by minimality of w0, which
implies that J (wε) + ε /∈ Q0. Therefore, by Lemma 4(7) applied to Q0 × Q,

∂dQ0×Q

(
J (wε) + ε,S(wε)

) = {(
ψ0

ε ,ψε

)}
(15)

is a singleton with |ψ0
ε |2 + ‖ψε‖2

Z∗ = 1. We claim that (ψ0
ε ,ψε) has the following representation:

(
ψ0

ε ,ψε

) = (
α0

ελ
0
ε , αελε

)
(16)

where (α0
ε , αε) ∈ [0,1] × [0,1] and (λ0

ε, λε) are defined as

(
α0

ε , αε

) =
(

dQ0(J (wε) + ε)

Jε(wε)
,
dQ(S(wε))

Jε(wε)

)
,

(17)(
λ0

ε, λε

) ∈ ∂dQ0

(
J (wε) + ε

) × ∂dQ

(
S(wε)

)
.

Note that if α0
ε = 0 or αε = 0, then λ0

ε or λε may not be unique. However, (α0
ελ

0
ε, αελε) is always uniquely defined.

To prove (16), denote (y0
ε , yε) = (J (wε) + ε,S(wε)). Then by (15) and Lemma 4(4),

ψ0
ε z0 + 〈ψε, z〉 = d ′

Q0×Q

((
y0
ε , yε

); (z0, z)
)
, (18)

for all (z0, z) ∈ R×Z. As shown in (12), dQ0×Q is the composition of (dQ0 , dQ) with the norm g(r1, r2) = [r2
1 +r2

2 ]1/2

in R
2. Since g Lipschitz with rank 1, by the chain rule in (9), we get the following directional derivative of the distance

function:

d ′
Q0×Q

((
y0
ε , yε

); (z0, z)
) = g′((dQ0

(
y0
ε

)
, dQ(yε)

); (d ′
Q0

(
y0
ε ; z0), d ′

Q(y; z))). (19)

To rewrite (19), first assume that dQ0(y
0
ε ) �= 0, dQ(yε) �= 0, then the directional derivative in (19) exists, and by

Lemma 4(4), d ′
Q0

(y0
ε ; z0) = 〈λ0

ε, z
0〉 and d ′

Q(y; z) = 〈λε, z〉. It follows from (18) and (19) that
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ψ0
ε z0 + 〈ψε, z〉 = dQ0(y

0
ε )d ′

Q0
(y0

ε ; z0) + dQ(yε)d
′
Q(y; z)√

dQ0(y
0
ε )2 + dQ(yε)2

= 〈dQ0(y
0
ε )λ0

ε, z
0〉 + 〈dQ(y)λε, z〉√

dQ0(y
0
ε )2 + dQ(yε)2

= 〈
α0

ελ
0
ε, z

0〉 + 〈αελε, z〉. (20)

Note that (20) continues to hold if only one of dQ0(y
0
ε ) and dQ(yε) is zero, and (14) implies that this is the case. Since

(z0, z) are arbitrary, (16) follows from (20).
Now consider a sequence εk ↓ 0 as k → ∞. The preceding discussion leads to sequences (with subindex εk changed

to k) wk,α
0
k , αk, λ

0
k, λk , and (ψ0

k ,ψk) ∈ R × Z∗ satisfying (16) and (17) with ε = εk . By passing to a subsequence,
we may assume that as k → ∞,(

α0
k , αk

) → (α0, α) ∈ [0,1] × [0,1],(
λ0

k, λk

) → (
λ0

0, λ0
)

(weakly in R × Z∗), and

either (1) λk = 0 for all k or (2) λk ∈ ∂dQ

(
S(wk)

)
for all k.

Clearly (ψ0
k ,ψk) → (α0λ0

0, αλ0) ≡ (ψ0,ψ). In the case (1), ψ = αλ0 = 0, which clearly satisfies (11.3). In the
case (2), λ0 ∈ ∂dQ(S(w0)) by the pseudo-continuity of the subdifferential in Lemma 4(5). In this case ψ = αλ0
also satisfies (11.3) by (10) for η ∈ Q.

Next we prove (11.2) by using (13.2). Let (z0, z) ∈ Ds(J,S)(w0). By definition of Ds there exists δk = δ(wk) ↓ 0
so that

(z0, z) ∈ Dδk
(
J (·), S(·))(wk). (21)

Again using the fact that Jεk
is the composite function of (J (·) + εk , S(·)) and the distance function dQ0×Q(·, ·),

which is Lipschitz with rank 1, (19), (21) and Proposition 3(a) imply that

ψ0
k z0 + 〈ψk, z〉 = d ′

Q0×Q

((
J (wk) + εk, S(wk)

); (z0, z)
) ∈ DδkJεk

(wk).

Now it follows from Proposition 2 that

ψ0
k z0 + 〈ψk, z〉 � −√

εk − δk. (22)

Taking a limit as k → ∞ in (22), we obtain (11.2) for all (z0, z) ∈ Ds(J,S)(w0).
Finally we use Lemma 5 with fk = (ψ0

k ,ψk) and f = (ψ0,ψ) to show that (11.1) holds. Since ‖((ψ0
k ,ψk))‖2 =

|ψ0
k |2 + ‖ψk‖2

Z∗ = 1, the condition that the norm of fk be bounded away from zero is satisfied. Note that for each
η ∈ Q, as k → ∞, by (11.3)〈

ψk,−η + S(w0)
〉 → 〈

ψ,−η + S(w0)
〉
� 0.

Adding this to (22) we get

ψ0
k z0 + 〈

ψk, z − η + S(w0)
〉
� −√

εk − δk + 〈
ψk,−η + S(w0)

〉
,

for all η ∈ Q. So we can use min{0,−√
εk − δk + 〈ψk,−η + S(w0)〉} for −εk in the lemma. Because Q, and hence

z − Q − S(u0), is finite codimensional, Lemma 5 implies that (ψ0,ψ) �= 0. �
Note that the proof shows that the element ψ ∈ Z∗ can be realized as a scalar multiple of an element in the

subdifferential ∂dQ(S(w0)) where the scalar is in [0,1].
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