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The existence of curves and symmetric maps with minimal total tension is proved.
Such curves and maps satisfy a class of fourth order differential equations.

1 Definitions of biharmonic maps and curves

Let N be a Riemannian manifold embedded into the Euclidean space Rm, m ≥
2, and Ω a smooth bounded domain in Rn, n ≥ 1.Given maps ϕ : ∂Ω → N
and ψ : ∂Ω → TϕN (i.e., ψ (x) is tangent to N at ϕ (x) for x ∈ ∂Ω), we look
for an “optimal” map u : Ω→ N such that

u = ϕ,
∂u

∂n
= ψ on ∂Ω, (1)

where n is the exterior normal direction of ∂Ω. In other words, we look for
a “best” way to extend the boundary value ϕ with the prescribed normal
derivative ψ. Typical examples of Ω and N are the unit ball and the unit
sphere, respectively. In this case, ψ : ∂Ω → TϕN means ϕ (x) · ψ (x) = 0 for
all |x| = 1.

With the given Dirichlet data ϕ, the most natural extension is perhaps
the harmonic map. Recall that a map u : Ω → N is harmonic if and only if
its tension field T (u) vanishes. In terms of the second fundamental form A of
N ⊂ Rm, T (u) can be expressed as

T (u) ≡ ∆u−A (u) (∇u,∇u) , (2)

where u is considered as a vector valued function from Ω to Rm, ∆u is the ordi-
nary Laplacian of u, ∇u is the gradient of u, and A (u) (∇u,∇u) is understood
as the trace of A.

However, with the normal derivative being prescribed, it is easy to see that
a harmonic extension does not generally exist. In fact, it was shown in [ 6 ]
that for almost all ϕ : ∂Ω→ N , there is a unique energy minimizing harmonic
extension u : Ω→ N ; therefore, ∂u

∂n has been determined by ϕ. In this paper,
we seek an extension u of ϕ with ∂u

∂n = ψ that is as close to a harmonic map
as possible. Specifically, we consider the total tension of u

T (u) =
∫

Ω

|T (u) |2dx, (3)
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and try to find u as a minimum of T .
Since A (u) is the projection of ∆u in the normal space of N at u, we have

|T (u) |2 = |∆u|2 − |A (u) (∇u,∇u) |2. (4)

Thus the natural class for the extensions is

C =
{
u : u ∈W 2,2 (Ω, N) and satisfies (1)

}
, (5)

where W 2,2 (Ω, N) is the set of all u : Ω → N ⊂ Rm with finite norm ||u||2,2,
defined by

||u||22,2 =
∫

Ω

(|u|2 + |∇u|2 + |∇2u|2) dx, (6)

Following the definition of Eells and Lemaire in [ 2 ], we will call a critical
point of T (u) a biharmonic map, and when n = 1, a biharmonic curve. In
1986, Jiang [ 3 ] derived the first and second variation formulae of T and gave
some examples of biharmonic maps, which include harmonic maps that are in
W 2,2. However, there is no general existence result for biharmonic maps due
to the fact that T is non-coercive. In Section 2 of this paper, we prove the
existence of biharmonic curves. In Section 3, an existence result on axially
symmetric biharmonic maps is proved.

Remark 1. A similar energy functional is Ω|∇2u|2dx (or
∫

Ω
|∆u|2dx), which is

perhaps more interesting from an analytic point view. Chang, Wang and Yang
[ 1 ] proved the partial regularity of critical points of

∫
Ω
|∆u|2dx. Hardt, Mou

and Wang [ 4 ] consider the partial regularity of minimizers of
∫

Ω
|∇2u|2dx

under conditions different from that of [ 1 ]. Since these functionals are coer-
cive, the existence of critical points and minimizers follows easily from direct
method.

Remark 2. One might be interested in the path in C with least total curvature∫
u[−1,1]

|κg|ds. However, such a path might not exist, or when it exists there
might be infinitely many. Consider the case of plane curves. It is well known
that if C contains a convex path, then

∫
u[−1,1]

|κg|ds is constant for all convex
curves (as they have same boundary conditions), and so each convex path is a
minimum. While if C contains no convex path, then it could happen that no
path would realize the infimum of the total curvature.

Remark 3. One might also be interested in the path of least total squared
curvature

∫
u[−1,1]

|κg|2ds of the Willmore type. This quantity might decrease
to 0 as the length of u [−1, 1] → ∞. Therefore, unless we consider only paths
with bounded length, the infimum 0 might never be realized. See [ 5 ] and the
references therein.
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2 Existence of biharmonic curves

For biharmonic curves u : [−1, 1] → N , the condition (1) and definitions (5)
(6) become

{u (−1) , u (1) , u′ (−1) , u′ (1)} = {p1, p2, v1, v2} ∈ N×N×Tp1N×Tp2N (7)

C =
{
u : u ∈W 2,2 ([−1, 1] , N) and satisfies (7)

}
, (8)

||u||22,2 =
∫ 1

−1

(|u|2 + |u′|2 + |u′′|2) dt. (9)

The total tension of u ∈ C is

T (u) =
∫ 1

−1

|T (u) |2dt =
∫ 1

−1

(|u′′|2 − |A (u) (u′, u′) |2) dt. (10)

We prove the following existence result.

Theorem 1. Given boundary data as in (7) such that the admissible set C 6= ∅,
the total tension T (u) has a minimum in C.

The proof of this theorem is a standard direct method. The key ingredients
are Lemmas 1, 2, which are proved later in this section. We conjecture that
Lemmas 1, 2 continue to hold for n ≥ 2, which would imply the existence of
biharmonic maps.

For u ∈ C and q > 0, we denote Dq (u) =
∫ 1

−1
|u′|qdt. The following lemmas

will be proved later.

Lemma 1. For every u ∈ C,

|u (t)− p1|+|u (t)− p2| ≤
∫ 1

−1

|u′ (s) |ds ≤
√

2D2 (u)1/2
, (11)

D2 (u) ≤ 2
(|v1|2 + |v2|2

)
+ 4T (u) , (12)

D4 (u) ≤ 2
(|v1|2 + |v2|2

)2
+ 32T (u)2

. (13)

Lemma 2. Suppose u ∈ C and T (u) ≤ K, then

||u||22,2 ≤M , (14)

where M is a constant depending only on K, N and {p1, p2, v1, v2}.
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Proof of Theorem 1. We use the direct method in calculus of variations. Sup-
pose

{
uk
}

is a minimizing sequence such that T (uk)→infu∈C T (u) as k →∞.
By Lemma 2, the sequence

{
uk
}

is bounded in W 2,2. Therefore, a subsequence
exists and weakly converges to some u ∈ C. It is easy to see that T (u) is lower
semicontinuous with respect to the weak convergence in W 2,2. So u is a mini-
mum. 2

Proof of Lemma 1. For t ∈ [−1, 1], by the fundamental theorem of calculus,
we have

|u (t)− p1|+|u (t)− p2| (15)

≤
∫ t

−1

|u′ (s) |ds+
∫ 1

t

|u′ (s) |ds =
∫ 1

−1

|u′ (s) |ds

≤
√

2 D2 (u)1/2
.

|u (t)− p1|+|u (t)− p2| (16)

≤
∫ t

−1

|u′ (s) |ds+
∫ 1

t

|u′ (s) |ds =
∫ 1

−1

|u′ (s) |ds

≤
√

2 D2 (u)1/2
.

This proves (11). Now using the fact that u′ is a tangent vector, which
implies that u′ ⊥ A (u), we have

|u′ (t) |2 = |v1|2 +
∫ t

−1

2u′ (s)u′′ (s) ds (17)

= |v1|2 +
∫ t

−1

2u′ (s)T (u (s)) ds

≤ |v1|2 + 2
∫ t

−1

|u′ (s) ||T (u (s)) |ds.

Similarly, we have

|u′ (t) |2 ≤ |v2|2 + 2
∫ 1

t

|u′ (s) ||T (u (s)) |ds. (18)

Averaging the above two estimates, we have

|u′ (t) |2 ≤ 1
2
(|v1|2 + |v2|2

)
+
∫ 1

−1

|u′ (s) ||T (u (s)) |ds (19)

4



Integrating (19) over [−1, 1] and applying Schwarz’s inequality to the
integral, we get

D2 (u) ≤ (|v1|2 + |v2|2
)

+
1
2
D2 (u) + 2T (u) . (20)

Solving for D2 (u) gives (12).
Next squaring the both sides of (19), using that (a+ b)2 ≤ 2a2 + 2b2, and

then using that D2 (u) ≤ √2 D4 (u)1/2, we have

|u′ (t) |4 ≤ 1
2
(|v1|2 + |v2|2

)2
+ 2D2 (u) T (u) (21)

≤ 1
2
(|v1|2 + |v2|2

)2
+ 2
√

2D4 (u)1/2 T (u)

≤ 1
2
(|v1|2 + |v2|2

)2
+

1
4
D4 (u) + 8T (u)2

Integrating this estimate over [−1, 1] , we get

D4 (u) ≤ (|v1|2 + |v2|2
)2

+
1
2
D4 (u) + 16T (u)2

. (22)

Solving for D4 (u), we get (13).2

Proof of Lemma 2. Assuming u ∈ C and T (u) ≤ K. By Lemma 1, we see that
||u||∞ is bounded in terms of K and {p1, p2, v1, v2}. It follows that ||A (u) ||∞
is bounded in terms of K and {p1, p2, v1, v2} and N.Therefore by (10),

T (u) ≥
∫ 1

−1

|u′′|2dt− ||A (u) ||∞ D4 (u) , (23)

which implies that
∫ 1

−1

|u′′|2dt ≤ T (u) + ||A (u) ||∞ D4 (u) . (24)

By Lemma 1 again, D4 (u), and therefore
∫ 1

−1
|u′′|2dt, is bounded in terms

of K, N and {p1, p2, v1, v2}.2

3 Existence of symmetric biharmonic maps

In this section we consider the special case when Ω = B, the unit ball in Rn

and N = Sn ∈ Rn+1, n ≥ 2. In this case the total Hessian of u ∈W 2,2 (B, Sn)
is

T (u) =
∫

B

(|∆u|2 − |∇u|4) dx, (25)
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and the Euler-Lagrange equation satisfied by a biharmonic mapu : B → Sn is

∆2u+ 2∇ (|∇u|2∇u)+ (3∆(∇u) · ∇u+ |∆u|2)u = 0. (26)

To derive this, we first get the Euler equation ∆2u+2∇ (|∇u|2∇u) = λu with
a Lagrange multiplier λ. Using the fact 1 = u · u, we find and simplify λ as

λ =
(
∆2u+ 2∇ (|∇u|2∇u)) · u = − (3∆(∇u) · ∇u+ |∆u|2). (27)

A map u : B → Sn is said to be axially symmetric if there is a map f :
Sn−1 → Sn−1 ⊂ Sn and a function ϕ : [0, 1]→ [0, π] such that for x ∈ B\ {0},

u (x) = (f (θ) sinϕ (r) , cos ϕ (r)) , (28)

where r = |x| and θ = x/|x|.
We assume that f (θ) : Sn−1 → Sn−1 is a harmonic map, that is,

∆θf + |∇θf |2f = 0. (29)

As for ϕ, we assume that it satisfies the boundary conditions

ϕ (0) = ϕ′ (0) = 0, ϕ (1) = a, ϕ′ (1) = b, (30)

and that the radial function ϕ (|x|) : B → R belongs to the space W 2,2 (B).
We calculate

ur = uϕϕ
′ = (f cosϕ, − sinϕ)ϕ′

urr = uϕϕ
′′ − uϕ′2

∆θu = −|∇θf |2 (f sinϕ, 0)

|∇u|2 = ϕ′2 +
|∇θf |2
r2

sin2ϕ

∆ϕ = ϕ′′ +
n− 1
r

ϕ′

∆u = uϕ∆ϕ− uϕ′2 − |∇θf |
2

r2
(f sinϕ, 0)

T (u) = ∆u+ |∇u|2u = uϕ

[
∆ϕ− |∇θf |

2

2r2
sin2ϕ

]

T (u) =
∫

B

|∆ϕ− |∇θf |
2

2r2
sin2ϕ|2dx (31)
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Lemma 3. If ϕ is a minimum of (31) satisfying (30), then the axially sym-
metric map u defined by (28) is a biharmonic map with boundary data

u|∂B = (f (θ) sin a, cos a) ,
∂u

∂n
|∂B = (f (θ) cos a, − sin a) b. (32)

Proof. Suppose ϕ is a minimum of (31). Consider a variation ϕt of ϕ with
d
dtϕt|t=0 = η ∈ C [0, 1] with η (0) = η (1) = 0. Let ut be defined as in (28) with
ϕt. We have

0 =
d

dt
T (ut) |t=0 (33)

= 2
∫

B

(
∆ϕ− |∇θf |

2

2r2
sin2ϕ

)(
∆η − |∇θf |

2

r2
cos2ϕ η

)
dx

= 2
∫

B

[
∆T (ϕ)− α

r2
cos2ϕ∆ϕ+

β

4r4
sin 4ϕ

]
ηdx,

where T (ϕ) = ∆ϕ− α
2r2 sin2ϕ, ∆ is the Laplacian on ϕ (|x|), and

α =
1

|Sn−1|
∫

Sn−1
|∇θf |2dσ, β =

1
|Sn−1|

∫

Sn−1
|∇θf |4dσ (34)

are the average values of |∇θf |2 and |∇θf |4, respectively. Thus (33) implies
that

∆T (ϕ)− α

r2
cos2ϕ∆ϕ+

β

4r4
sin 4ϕ = 0. (35)

It is not hard to see that this is the same as (26) for axially symmetric
map. So a critical point ϕ of (31) defines biharmonic map.2

Theorem 2. Suppose n≥ 5, f : Sn−1 → Sn−1 is harmonic, and a, b are two
numbers, then there is an axially symmetric biharmonic map u: B → Sn as
in (28).

Proof. The method of proof is again the direct method in calculus of variations.
By Lemma 3, it is equivalent to showing that (31) has a critical point. The
key ingredient here is to show that if

{
ϕk
}

is a minimizing sequence of (31),
then

∫
B
|∆ϕk|2dx will be bounded. Indeed, from (31) we get

T (u) =
∫

B

|∆ϕ− |∇θf |
2

2r2
sin2ϕ|2dx (36)
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≥
∫

B

[
1
2
|∆ϕ|2 −

( |∇θf |2
2r2

sin2ϕ
)2
]
dx

≥
∫

B

1
2
|∆ϕ|2dx− β

∫

B

sin2ϕ cos2ϕ rn−5dx,

where β is defined in (34). Since n ≥ 5,

∫

B

|∆ϕ|2dx ≤ 2T (u) + 2β|Sn−1|
∫ 1

0

sin2ϕ cos2ϕ rn−5dr ≤ 2T (u) +
2β|Sn−1|
n− 4

.

(37)
This implies that

{
ϕk (|x|)} is bounded in W 2,2 (B,Rm) and so it has a sub-

sequence weakly converging to some ϕ, which must be a minimum by lower
semicontinuity of (31).2
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