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ABSTRACT. Let B be a ring with 1 and C' the center of B. It is shown that if B
is a Galois algebra over R with a finite Galois group G, J, = {b € B|bx = g(x)b
for all # € B} for each g € (7, and e, an idempotent in C such that BJ, = Bey,
then the algebra B(g) generated by {J,|h € G and e, = ¢,} for an g € G is
a separable algebra over Re, and a central weakly Galois algebra with Galois
group K(g) generated by {h € G|e, = e,}. Moreover, {B(g)|g € G} and
{K(g)|g € G} are in a one-to-one correspondence, and three characterizations of

a Galois extension are also given.

1. INTRODUCTION

The Boolean algebra of the idempotents in a commutative Galois algebra plays an
important role ([2],[9]). For a noncommutative Galois algebra B over a commutative ring
R with a finite Galois group G and center C, and J, = {b € B |bx = g(x)b for all x € B}
for each g € G, it was shown that BJ, = Be, for some central idempotent e, (€ C) for
any g € G ([5]). We note that the central idempotent e, is uniquely determined by g in
G. To see this, let e be a central idempotent of B. Then the mapping b — be (b € B)
defines a ring epimorphism B — Be because (b+b')e = be +b'e and (bb')e = (be)(b'e) for
every b, b’ € B. Thus, as the image of 1, e is the identity of the subring Be. Therefore if f

is another central idempotent of B such that Be = B f, then f is also the identity of Be,
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and so we know that e = f. Hence, in particular, if f is a central idempotent such that
BJ, = Bf, ie., Be, = Bf, then it follows that f = e;,. Let B, be the Boolean algebra
generated by {0,e,|g € G'}. Then a structure theorem for B was given by using B, ([6])
and the subalgebra © }° ¢ (1) Jy Was investigated where K(1) = {h € G|e, = 1} ([8]).
We note that B is a central Galois algebra with Galois group G if and only if K(1) = G.
Let S(g) = {h € G|ep = ¢4} for each ¢ € G. Then S(1) = K(1), but S(g) is not a
subgroup of G for any e, # 1 ([7]). Denote the subgroup generated by the elements in
S(g) by K(g). The purpose of the present paper is to investigate a more general class
of algebras B(g) generated by {J,|h € S(g)} for an ¢ € G. The major results are (1)
B(g) = ® Xopex(g) €9k, (2) B(g) is a separable algebra over Reg, (3) B(g) is a central
weakly Galois algebra with Galois group K (g) where a weakly Galois algebra is in the
sense of [9], and (4) there exists a one-to-one correspondence between the set of algebras
{B(g)|g € G} and the set of subgroups {K(g) |g € G}. Thus B = }_ . B(g) such that
B(g) is a central weakly Galois algebra with Galois group K(g) for each g € G. Three
remarkable characterizations of a Galois extension in section 5 were given by the first
author. This paper was written under the support of a Caterpillar Fellowship at Bradley

University. The authors would like to thank Caterpillar Inc. for the support.

2. BASIC NOTATIONS AND DEFINITIONS

Throughout this paper, B will represent a ring with 1 and G a finite automorphism
group of B. We keep the definitions of a Galois extension, a Galois algebra, a central

Galois algebra, a separable extension, and an Azumaya algebra as defined in ([6]).

From now on, let B be a Galois algebra over a commutative ring R with a finite Galois
group G, C the center of B, J, = {b € B|bzx = g(z)b for all x € B} for each g € G, ¢,
a central idempotent in C such that BJ, = Be, ([5]), S(g) = {h € G|en = ¢4} for each
g € G, K(g) the subgroup of G generated by {h|h € S(g)}, B(g) the algebra contained
in B generated by {J,|h € S(g)} for each g € G, and JéA) = {a € Alax = g(z)a for
all z € A} for a subring A of B. A weakly Galois extension A with Galois group G is a
finitely generated projective right module A over A% such that A;G = Hom 4c (4, A) where

2



A; = {ay, the left multiplication map by a € A} and (a;9)(z) = ag(x) for each a; € A; and
x € A ([9]). We call A a weakly Galois algebra with Galois group G if A is a weakly Galois
extension with Galois group G such that A“ is contained in the center of A and that A is
a central weakly Galois algebra with Galois group G if A is a weakly Galois extension with
Galois group G such that AY is the center of A. An Azumaya Galois extension A with
Galois group G is a Galois extension A of A which is a C“-Azumaya algebra where C is
the center of A ([1]). We call A an Azumaya weakly Galois extension with Galois group
G if it is a weakly Galois extension of A“ which is a C“-Azumaya algebra where C is the

center of A.

3. THE SEPARABLE ALGEBRA B(g)

Let g € G and B(g) the algebra generated by {J; | h € S(g)}. Keeping the notations
in section 2, we shall show that B(g) = @ZkGK(g) eqJr and that B(g) is a separable

algebra over Re,. We begin with some lemmas.

LEMMA 3.1.
Let G(g) ={h € G| h(ey) =e,}. Then K(g) is a normal subgroup of G(g).

PROOF. Clearly, G(g) is a subgroup of G. Next, let k € S(g). Then e; = e,4; and
so k(ey) = k(er) = eppx-1 = e, = e4. Hence k € G(g). Thus S(g) C G(g). But K(g) is
the subgroup generated by the elements in S(g) by the definition of K(g), so K(g) is a
subgroup of G(g). Next we show K (g) is a normal subgroup of G(g). For any h € G(g)
and k € S(g), we have that eppp-1 = hiex) = hley) = ey, so hkh™! € S(g). Clearly,
k=' € S(g) if k € S(g). Hence for any k € K(g), k = kiks - - - ky, for some integer m and
some k; € S(g), i = 1,2,---,m. Thus, for any h € G(g), hkh™ = h(kiks---k,)h™! =
(hkih=Y)(hkah™t) - - (hky,h™1) € K(g). Therefore hK(g)h™! C K(g) for any h € G(g).

This proves that K (g) is a normal subgroup of G(g).

LEMMA 3.2.

Be, is a separable algebra over Re,.



PROOF. Since B is a Galois algebra over R, B is a separable algebra over R. Hence
Be, is a separable algebra over Re, ([3], Proposition 1.11, page 46).

LEMMA 3.3.
For each h € G(g), J,SBeg) =egJp.

PROOF. See Lemma 3.3 in [6].

THEOREM 3.4.

B(g) = ® Xrek(y) €9n-

PROOF. Since B(g) is generated by {J, |h € S(g)},

B(g) = {>_(I1Jy), a finite sum of finite products of J, for some h € S(g)}.

By Proposition 2 in [5], JyJp = epJpn = ey Jpp for any h,h' € S(g), so ILJ, = ey Jmy, for
some h € S(g). Hence B(g) = > 1 c gy €97k~ But B is a Galois algebra over R with Galois
group G, 80 B =83 ;5 Jy ([5], Theorem 1). Noting that .J, is a C-module, we have that
egJn C Jy for each h € K(g). Thus, the sum is direct, that is, B(g) = @ >,k (y) €9 k-

THEOREM 3.5.
For each k € K(g), exe; = €.

PROOF. We want to prove that

(*) €91€g95 """ €g, = €gy " "€y, Cg195-g,

for any integer n > 2 and any elements g1, g2, ---, g, of G. Consider now the case
for n = 2. We know by Proposition 2 in [5] that J,, J,, = ey, J4,4,, and so ey ey, B =
eg BJg, = BJg, Jg, = Beg,Jg g, = €9, BJg 4, = €g,€4,9,B. Since ey, ey, and eg,ey, g, are

central idempotents, we have
(1) €91€g5 = €g2€g1 95 for any g1, g2 € G.

Now assume that (x) is true for an n(> 2) and any g1, g2, -+, gn € G. Let gn11 be

any element of G. Then by applying (1) to g192-- g, and g,11 instead of g; and go
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respectively, we have

(2) 69192"'9negn+1 = egn+169192"'9n9n+1'

Thus we conclude

€g1€g2 " €9, €g, 11 = (€g1€g5 * " €9, )€g,, 1,

= (€gy """ €g,€g1g--gn )€gn,r DY the assumption (*)

= (€95 " €9, ) (€g192--9n €gn1)

= (egy " €9, )(€gn11€9195--gngns1) DY (2)

= C€g2 """ €9, Cgnt1€9192 gngn1-
This shows by induction that (%) holds for any n > 2 and any ¢1, g2, -+, gn € G.

Now assume that hq, ha, -+, h, € S(g) for some integer n,soe, =ep, =ep, =+ =

en, . Then e; = ejep, py...n, by the above result (x). Let L be the set of those elements of G
which are finite products of elements in S(g). Then clearly L is closed under multiplication.
Since ep, = ep-1 for any h € G ([5], Proposition 2-(3)), e, = ep = e,-1 for any h € S(g);
and so h~! € S(g). It follows that if h = hihy---h, € L where hy, hs, --+, hy, € S(g)
for some integer n, then h™' = h;'---h' € L. Thus L is a subgroup generated by the
elements in S(g); that is, L = K(g). Therefore, for any element k € K(g), k = hiha---hy,

where hq, ha, ---, hy, € S(g) for some integer n, we have that e, = e e;. This completes

the proof.
Next is the main theorem in this section.

THEOREM 3.6.

B(g) is a separable algebra over Re,.

PROOF. Since B is a Galois algebra over R with Galois group G, there exists a
¢ € C such that Trg(c) = 1 by the proof of proposition 5 in [5]. Let {K(g)g;|g: €
G,i = 1,2,---,m for some integer m} be the set of the right cosets of K(g) in G and
d =372, gi(c). Then Tri(g)(d) = ZkEK(g) k(d) = ZkeK(g) >oic kgi(e) = Trg(c) = 1.
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Hence Trg (g (deyz) = eyx for each ejz € (e,B)%(9). Thus the map Trgg(d_) : B —
(e,B)X(9) is a split bimodule homomorphism over (e, B)X(9). This implies that (e, B)¥ ()
is a direct summand of e, B as a bimodule over (e,B)¥(9). On the other hand, e,B is a
Galois extension of (e, B)%(9) with Galois group G(g) by Lemma 3.7 in [6], so e,B is a
Galois extension of (e, B)X(9) with Galois group K (g) for K(g) is a subgroup of G(g) by
Lemma 3.1. Hence e,B is a finitely generated and projective left (or right) module over
(e,B)X9). Thus (e,B)X) is a separable algebra over Re, by the proof of Theorem 3.8
on page 55 in [3] because Be, is a separable algebra over Re, by Lemma 3.2. Next, we
claim that Ce, C (egB)K(g). In fact, for any ce, € Cey, k € K(g), and z € Ji, we have
that (cey)x = z(cey) = k(ceg)z, so (ce, — k(cey))x = 0. Hence (cey, — k(cey))Jr, = {0}.
But JiJg-1 = exC ([5], Proposition 2), so (ce, — k(cey))er,C = {0}. By Lemma 3.5,
eqer = €g, 50 (ceq — k(cey))C = {0}. Thus cey, — k(cey) = 0, that is, k(cey) = cey. This
implies that Ce, C (e,B)¥(9). Therefore Ce, is contained in the center of (e,B)%(9)
for Ce, is contained in the center of B. Consequently (e,B)¥ (9) is separable over Ce,
([3], Proposition 1.12, page 46). Moreover, since Be, is separable over Re,, Be, is an
Azumaya algebra over Ce, and Ce, is separable over Re, ([3], Theorem 3.8, page 55).
Hence Vg, ((e,B)X(9)) is separable over Ce, by the commutator theorem for Azumaya
algebras ([3], Theorem 4.3, page 57); and so it is separable over Re, by the transitivity
of separable algebras. But, by Proposition 1 in [5], VBeg((egB)K(g)) =® 2 kek(g) J,gBeg),
50 Vie, ((e,B)KW) = @ > keK(g) €9k by Lemma 3.3. Therefore B(g) (= ® X e x(y) €97k

by Theorem 3.4) is a separable algebra over Re,.

4. THE CENTRAL WEAKLY GALOIS ALGEBRA B(g)

We recall that an algebra A over a commutative ring R with a finite automorphism
group G is called a weakly Galois extension with Galois group G if A is a finitely generated
projective right A“-module such that 4;G = Homuc (A4, A) where 4; = {a;, the left
multiplication map by a € A}. We shall show that B(g) is a central weakly Galois algebra
with Galois group U(g) where U(g) = K(g)/L and L = {k € K(g)|k(a) = a for all
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a € B(g)}. For each k € K(g), k is denoted as the coset kL € U(g) and k(b) = k(b) for
b € B(g).

LEMMA 4.1.
(B(g))X) = Z, the center of B(g).

PROOF. Let z be any element in (B(g))¥(¥) and b any element in B(g). Then
b= ZkeK(g) eqbi, where by, € Jj, for each k € K(g) by Theorem 3.4. Hence

bxr = Z egbrr = Z egk(x)by, = Z eqxby = x Z eqbr, = ab.

k€K (g) keK(g) kEK (g) keK(g)

Thus & € Z. Therefore (B(g))X9) c Z. Conversely, for any z € Z, k € K(g), and
x € Ji, we have that zx = xzz = k(2)z, so (k(z) — z)x = 0 for any = € J;. Hence
(k(z) — z)J;, = {0}. Noting that JJ,-1 = exC, we have that (k(z) — z)ex,C = {0}. By
Lemma 3.5, ,C = e4e;,C C e;,C. Hence (k(z) — 2)e,C = {0}, so (k(2) — z)e, = 0, that
is, k(zey) = zeg. But z is in the center of B(g) and B(g) = @3y (y) €9k, 50 264 = 2.
Thus k(z) = z for any 2z € Z and k € K(g); and so Z C (B(g))¥).

THEOREM 4.2.
B(g) is a central weakly Galois algebra with Galois group U(g), that is, B(g) is a

weakly Galois algebra over its center Z with Galois group U(g).

PROOF. By Lemma 4.1, it suffices to show that B(g) is a weakly Galois algebra
with Galois group U(g). In fact, by Theorem 3.6, B(g) is separable over Rey, so B(g) is
an Azumaya algebra over Z. Hence B(g) is a finitely generated projective module over Z
(= (B(9))V®), and the map f : B(g)®z(B(g))° — Homz(B(g), B(g)) is an isomorphism
([3], Theorem 3.4, page 52) where (B(g))° is the opposite algebra of B(g), f(a®b)(x) = axb
for each a®b € B(g)®,(B(g))° and each z € B(g). By denoting the left multiplication map
with a € B(g) by a; and the right multiplication map with b € B(g) by b,, f(a ® b)(z) =
b = (ahy)(@). Since Blg) = & Lyercqy) €0l BO) 02 (B))” = Lpereiy) (BONr-
Observing that (Ji), = (Jp )ik ~ where k = kL € U(g) = K(g)/L, we have that B(g) @z
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1 - —1

(B(g))° = ZkEK(g)(B(g))l(Jk)T = ZkEK(g)(B(g))l(Jk)lE_ = ZkEK(g)(B(g)Jk)lk

Moreover, since B(g) = @) ,ck(y) €9Jn and egep = e, for each h € K(g), B(g)Jy =
DY ner(g) ColnTh = D Xpercy) CoehInk = D Ypercq) €olnn = Blg) for each k € K(g).

1 1

Therefore B(g) ®z (B(g))? = ZkeK(g)(B(g)Jk)lE = ZkEK(g) (B(g)ik
= (B(9))U(g). Consequently (B(g));U(g) = Homyz(B(g),B(g)). This completes the

proof.

COROLLARY 4.3.
By keeping the notations of Theorem 4.2, B =} .o B(g), a sum of central weakly

Galois algebras.

PROOF. Since B is a Galois algebra with Galois group G, B = @3 5 Jy ([5],
Theorem 1). But B(g) is generated by {.J,|h € S(g)} which contains J,, so J, C B(g)
for each g € G. Thus B = }_ , B(g) such that B(g) is a central weakly Galois algebra
by Theorem 4.2.

We recall that a Galois extension A with Galois group G is called an Azumaya Galois
extension if A% is an Azumaya algebra over C% where C' is the center of A. We define a
weakly Galois extension A with Galois group G a weakly Azumaya Galois extension if A
is an Azumaya algebra over C“. As a consequence of Theorem 4.2, B(g)(B(g))%¥ can

be shown to be a weakly Azumaya Galois extension with Galois group U(g).

COROLLARY 4.4.
(B(9)) (e BYK) is a weakly Azumaya Galois extension of (e, B)X'9) with Galois group
U(g) = K(g)/L.

PROOF. By Theorem 4.2, (B(g)):U(g) = Homz(B(g),B(g)), so
((B(9))(egB)*@),U(g) = Homyz(B(g), B(g)) (e, B)*¥)

= Homz(B(9), B(g)) @7 (¢,B)*Y)

= Homy,, gy (B(9) ®7 (¢,B)*), B(g) ®7 (¢, B)*17).
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Moreover, by the proof of Theorem 3.6, B(g) and (e, B)%X(9) are Azumaya algebras over Z,
s0 it is easy to see that (B(g)) (e, B)X9) = B(g)®y (e, B)X(9) which is a finitely generated
projective module over (e,B)X(9). Thus (B(g))(e,B)K is a weakly Azumaya Galois
extension of (e, B)%¥(9) with Galois group U(g) = K(g)/L.

Next we characterize a Galois extension B(g) with Galois group U(g).

THEOREM 4.5.
The following statements are equivalent:
(1) B(g) is a central Galois algebra with Galois group U(g).
(2) B(g) is a Galois extension with Galois group U(g).
(3) JéB(g)) =®Y ep, € for each k € U(g).

PROOF. (1) = (2) is clear.
(2) = (1) is a consequence of Lemma 4.1.

(1) = (3) Let B(g) be a central Galois algebra with Galois group U(g). Then B(g) =
® ZEGU(g) JéB(g)) ([5], Theorem 1). Next it is easy to check that &, ; e, Ju C JéB(g))
for each k € K(g). But B(g) = ®> ¢y €9k by Theorem 3.4, s0 © 371 c ey €9k =
&Y rev(g A (by Lemma 3.3) such that @& Y, e Jyr € A9, Thus JEO) =
DY jer €9k for each k € U(g).

(3) = (1) Since J’%B(g)) =® Y e, €gdri for each k € U(yg),

B
Blg)=a Y edi=a ». JI
keK(g) keU(g)
Moreover, by Lemma 4.1, (B(g))¥) = Z, so U(g) is an Z-automorphism group of B(g).
But then it is well known that JkSB(g))JéJ_Bl(g)) = Z for each k € U(g). Thus B(g) is a
central Galois algebra with Galois group U(g) ([4], Theorem 1) for B(g) is an Azumaya

algebra over Z by Theorem 3.6.



5. A ONE-TO-ONE CORRESPONDENCE

In this section we shall establish a one-to-one correspondence between the set of al-
gebras {B(g) | g € G} and the set of subgroups {K(g)|g € G}, and give three remarkable

characterizations of a Galois extension due to the first author.

LEMMA 5.1.
Let a : e, — K(g). Then « is a bijection between {e, | g € G} and {K(g)|g € G}.

PROOF. Assume that K(g) = K(h) for some g,h € G. Since h € K(h), h € K(g).
Hence e, = egep, by Lemma 3.5. Similarly, e, = egep. Thus e, = ep,; and so « is one-to-one.

Clearly, « is onto. Therefore « is a bijection.

LEMMA 5.2.
Let 3 : e, —> B(g). Then (3 is a bijection between {e, |g € G} and {B(g) |g € G}.

PROOF. Assume that B(g) = B(h) for some g,h € G. If B(g) = B(h) = {0}, then
eg =0 =en. If B(g) = B(h) # {0}, noting that e; € ¢,C = egJ1 C ® Y pcp(y) €k =
B(g) by Theorem 3.4, we have that e, is the identity of B(g) and ej is the identity of

B(h). Hence e, = ej,. Thus /8 is one-to-one. Clearly, 3 is onto. Therefore § is a bijection.

Lemma 5.1 and Lemma 5.2 imply a one-to-one correspondence between {B(g) |g € G}

and {K(g)|g € G}.

THEOREM 5.3.
Let ¢ : K(g) — B(g). Then ¢ is a bijection between {K(g)|g € G} and {B(g)|g €
G}.

PROOF. By Lemma 5.1 and Lemma 5.2, ¢ = Sa~! is a bijection.

We conclude the present paper with two interesting equivalent conditions for a Galois
extension of a ring and a characterization of a Galois extension of a field. Let L be a ring
with a finite automorphism group G, K = LY, and R the endomorphism ring of the right
K-module L. Then L can be regarded as a two-sided R-K-module. For each a € L, denote
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by @ the mapping * — az (x € L). Then @ is an endomorphism of Lk, i.e., @ € R, and
the mapping a — @ an isomorphism from L into R. Let L be the image of L by this
isomorphism. Let ¢ be any element in G. Then o is in R, because (ax)? = a2z’ = a%x
for every a € L and = € K. Moreover, we have (ca)b = o(ab) = (ab)? = a’b” = (a®0)b
for any a,b € L, which shows that 0@ = a°c for any a € L and in particular oL = Lo.
Now L is called a Galois extension of K relative to GG if the right K-module L is finitely
generated and projective and R = . ®oL. Thus, without using the crossed product

of L and G with trivial factor set, a Galois extension is characterized.

THEOREM A.
The following are equivalent:
A. L is a Galois extension of K relative to G.

B. There exist z1,---,2n; Y1, -+, Yn in L such that
Zn:‘”‘ s [1, ifo=1
L Wi =0, ifo#l.

PROOF. First we prove that A implies B: Assume A. Then Ly is finitely generated
and projective, which means the existence of finite number of x; € L and homomorphism
¢i: Lk — Kk (i =1,2,...,n) such that > | #;¢;(z) =« for all z € L. Since K C L,
each ¢; is an endomorphism of Ly, i.e., ¢; € R. Then the above equality can be written
as (> Ti¢;)x = z for all x € L. But this means the following equality: Y., Z;¢; = 1.
Since R=3 . oL by assumption A, each ¢; can be expressed as ¢; = > vcc 0Ui, With
Yio € L (1 <i<mn,o€qG). On the other hand, since ¢;z € K for every x € L, it follows
that ¢,z = 7(¢;z) = (7¢;)x for every 7 € G and x € L and hence ¢; = 7¢; = > . T0Y; ,
for every 7 € G. Since R is a direct sum of oL (0 € G), this implies that Yire = Yio
for every o, 7 in G and hence y; , is independent of ¢ and depends only on i. Therefore
we can write y; = ¥, for every o, so that we have ¢; = (3, .5 0)7;. It follows then
L= 1T = 2 i Ti(Xoea O = 2opea Xy Tyl )o. From this we can conclude
that 1 =" @y, and 0= Y1 a;yf if 0 # 1.
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Next we assume B. Let ¢; = (D .5 0)¥; for each i (1 <4 <n). Then ¢; is in R and
satisfies 3.7 Ty = D 1 Ti(Xpeq OV = Popea(Doie1 Tiy?)o = 1. This implies that
S wigi() = Y wi(gw) = (X1, Tidi)w = x for every x € L. Moreover, ¢;(z) =
(X _geq @) (yiz) for every z € L and so for any 7 € G we have ¢;(x)” = 7(3_ c 0)(yir) =
X peaTo)Wir) = O ,cq0)(yir) whence ¢;(x)” = ¢i(x) for every z € L and 7 € G.
Thus we know that ¢;(x) is in LY = K for every € L, i.e., ¢; is a homomorphism
L — Kx and therefore Ly is finitely generated and projective.

Let o be any endomorphism of Ly, i.e., @« € R. Then we have (3.7, aZ;¢;)z =

Yo AT (@) = Do (i) di(x). But ¢4(z) € K, we have

Y (azi)gi(z) = a(zidi(x)) = a Zfl?i(bi(x) = az.

i=1 i=1
Thus we have }.! , aZ;¢; = a. Since ¢; € Y ., 0oL, this means that o € Y - oL.
Therefore we know that R =3 __. oL. Let > ca @s0 be any linear combination of 0 € G

with a; € L. Then for each 7 € G we have 31 | (3" c Gooxi)y] = > i1 (X i @oxd )yl

—1
= deG Qg 2?21 S THES deG aa(Z?:l z;y;® )° = ar because
n .
ley?.a—l _ 1, fo=r1
, o 0, ifo #r.
=1
Therefore if ) - @y0 = 0, then it follows a, = 0 for every 7 € G, which shows that R is

a direct sum of Lo = oL, i.e., R = Y ovecc ®oL. Thus L is a Galois extension of K relative

to G.

Next, consider L as a left K-module and let S be the endomorphism ring of g L. Then
L can be regarded as a two-sided K-S-module. For each a € L, denote by a the mapping
x —> za (x € L). Then a is an endomorphism of gL, i.e., a € S, and the mapping a — a
an isomorphism from L into S. Let L be the image of L by this isomorphism, so that L
(2 L) is a subring of S and ac = 0a” for each 0 € G and a € L. Now L is called a
left Galois extension of K relative to G if L as a left K-module is finitely generated and

projective and S = ) __~ ®cL. Then it can be shown that a left Galois extension and a

Galois extension are the same.
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THEOREM B.
The following are equivalent:
A. L is a Galois extension of K relative to G.

A;. L is a left Galois extension of K relative to G.

PROOF. First we prove that A; implies A: Assume A;. Then g L is finitely generated
and projective, i.e., there exist finite number of y; € L and homomorphism ; :x L — g K
(¢=1,2,...,n) such that Y. | ¢;(z)y; = z for all z € L. But since K C L, each ¢; is an
endomorphism of gL, i.e., ¢; € S. Then we have 2>, Uiy, = S i(x)y; = @ for all
x € L, which shows that >3;_, ¢y, = 1. On the other hand, each ¢; isin S =3 . 0L
and therefore it is expressed as v; = Y s ; ,0 with z;, € L (1 <i <n, 0 € G). Since
x; = P;(x) € K for every ¢ and x € L, we have that z(y;7) = ¥ (x)T = ¢i(x) = 1)y
for every i, 7 € G and x € L, and thus ;7 = ; for every ¢ and 7 € G. But since
ViT = ) ca; .07 for every 7 € G and S is a direct sum of oL (0 € G), we know
that z; ;o = z;, for every ¢ and o, 7 in G and therefore z; , is independent of ¢ € G,

which means that if we put z; = x;1 then z; = z;, for every 0 € (. Thus we have

Vi = ;) e 0 and therefore

n

1= vy, =) m(Y_ o)y, = Yoy (#fy) = oy afu

ceG ceG  i=1 ceG i=1

1, ifo=1
0, ifo£1 "
1, ifo=1

n o __ n 0'_1 o — o .
therefore Y ", xyy = X, 27 yi)° = { 0 ol Thus the condition B of Theorem

Since S is a direct sum of oL (0 € G), it follows that Y . a7y; = { d

A holds. Therefore by Theorem A we have the condition A.

Next we want to prove that A implies A;: Assume A. Then by Theorem A, there

exist &1, -+, Tn; Y1,---,Yn in L such that
Zn:*’”‘a_ 1, ifo=1
L Wi =0, ifo#l.
Then we have
n n
— oo |1, ifo=1
>ootu = (et ={y ozt
i=1 i=1
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Let ¢; = z; > cqo for each i (1 < i < n). Then ¢; is in S and satisfies S %Qi =
Y1 (X eeq Y, = Ypea @ iy 27y, = 1. Therefore we have

n n

Z%’(w)yi = Z(-W/)z‘)yi = wzwlgi =z for every x € L.
=1

i=1 i=1
Furthermore, (2)" = (016:)7 = (2, 5, 0)7 = 2(2; e 07) = 02, s 0 = as =
Y;(z) for every € L and 7 € G and this implies that 1;(x) is in LY = K for every z € L
and thus v; is a homomorphism g L — g K. This shows that g L is finitely generated and
projective.

The rest part of the proof is similar to the proof for the implication B — A of
Theorem A. Namely, let 8 be any endomorphism of gL, i.e., 8 € S. Then we have
(i iyif) = Yo i) (yiB) = (1=, vi(x)y:)B = aB for every x € L, and thus
we know that > 7, ¢y = 8. Since o; € Y 0L, it follows that 5 € Y . 0L,
which shows that S =3 _,oL. Next let )  _.oa, be any linear combination of o € G
with coefficients a, € L. Then we have, for each 7 € G, >0 27 (4 (>, cq 0a,)) =
S 2T T W0 = Toee(TIn 700000 = ¥oea(TIy 77 9)%as = ar because
S a7 'y, =1if o =7 and = 0 if 0 # 7. Therefore it follows that Yvec 08, =0,
then a, = 0 for every o € G. Thus we know that S is a direct sum of oL (¢ € G), i.e.,

S =3 ,cc ®oL. This completes the proof of our theorem.

THEOREM C.
Let L be a (commutative) field and G a finite group of automorphism of L and let
K = L% Then K is a subfield of L and [L : K] = n, where n is the order of G, and

moreover L is a Galois extension of K relative to G.

PROOF. 1. First we prove that [L : K] = n. Let a be any element of L and let
G(a) = {0 € G|a” = a}. Then G(a) is a subgroup of G. Let n(a) = (G : G(a)).
Then n(a)|n whence n(a) < n. Let o,7 be in G. Then a” = a7 if and only if a’m =
a, i.e., o7t € G(a), ie., Gla)o = G(a)r. Let oy, 09, ..., Opn(a) be in G such that
G(a)oi, G(a)os, ..., G(a)oy,) are all distinct right cosets of G mod G(a). Then for each
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o € G G(a)oio, G(a)oqo, ..., G(a)o,o are all distinct right cosets of G mod G(a).
Consider now a polynomial f(z) = (z — a”)(x — a®?)---(z — a’»@) over L. Then for
each ¢ € G we have f(z)? = (z — a2 7)(x — a%27)---(z — a”*»7) = f(x). Therefore
f(x) is a polynomial over K and of degree n(a). Let G(a)o. = G(a), ie., o, € G(a).
Then a’¢ = a. This implies that f(a) = 0. Let g(x) be a polynomial over K such that
g(a) = 0. Then we have g(a”*) = g(a)?* = 0. Therefore g(x) = (r — a”*)g;(z) with
a polynomial g;(z) over L. Next we have (a”2 — a!)g;(a’?) = g(a??) = g(a)?2 =

But a’* # a2, ie., a2 — a% # 0, we have that g;(a”?) = 0 and therefore g, (z) =
(x—a”?)gs(x) with a polynomial g2 (z) over L. Thus we have g(z) = (z—a?*)(x—a%2)ga(x).
Similarly, by considering o3, ..., 0y(,), We have a polynomial g,,(,) (z) over L such that
g(x) = (x —a”)(x —a) - (x — a”@)gn(a)(7) = f(T)gn(a)(x). Thus f(x) is a minimal
polynomial of a over k, which shows that [K(a) : K] = n(a) and a is separable over K for

every a € L.

Now since n(a) < n for every a € L, we can choose u € L such that n(u) is maximal,
i.e., n(a) < n(u) for every a € L. Let a be any element, of L, and consider K (a,u). Then
K (a,u) is a finite whence separable extension of K, and therefore as is well known there
exists a b € L such that K(b) = K(a,u). It follows that K(u) C K(b) whence n(u) < n(b).
But the maximality of n(u) implies that n(u) = n(b) whence K (u) = K(b). Thus we know
that @ € K(u) for every a € L, which means that L = K(u) and so [L : K] = n(u). Let
now o be any element of G(u). Then u” = u whence a” = a for every a € L, i.e., o is the

identity automorphism. Thus we know that n(u) =n and so [L : K] = n.
By using this we shall prove

II. L is a Galois extension of K relative to G: First L is a finite extension of K, Lk
is finitely generated. Next since K is a field, every K-module and in particular L is
projective. Let R be the endomorphism ring of Lx and we regard L as a left R-module.
For each | € L, we denote by I the mapping = — Iz (z € L). Then [ is an endomorphism
of L, and the mapping | — [ is a ring isomorphism of L into R. We denote by L

the image of L by this isomorphism. Similarly we denote by K the image of the subfield
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K of L. Now let a be any endomorphism of Lk, ie., « € R. Let a and [ be any
elements of K and L respectively. Then by using the commutativity of the field L we
have (aa)l = a(al) = a(al) = (al)a = a(la) = a(al) = a(al) = (aa)l, which shows that
@o = aa, i.e., a is whence K is in the center of R.

Let (I Ils ... l,) beany vector of length n with [; (i =1,2,...,n) in L and « an

endomorphism of Ly. Then we define
Oé(ll lz ln):(all O{lz O{ln)

Let 8 be another endomorphism of Lx. Then we can see that

af(ly Iy ... ly)=(ably afls ... aBl,)

=a(ply Bla ... Bly)

=a(f(l o ... 1n)).
Let uy, us, ..., u, be a linearly independent basis of Lx. Let a be an endomorphism of
Lg. Then for each j, au; is expressed as au; = Y wu;a;; with a;; € K. Then if we put
A as the n x n matrix whose (i, j)-component is a;;, we have (au; auy ... au,) =
(up uwy ... wuy)A. Since uy, usg, ..., u, are linearly independent over K, A is uniquely
determined by «. Thus by associating o with A we have a mapping ¢ from R into the

set [K], of all n x n matrices over K. Let conversely A be an n x n matrix over K.

1
Ca
Let | be any element of L. Then I = (u; us ... uy)]| . with a unique vector
Cn
C1 C1
C2 C2
in K. Then by associating [ with (uy w2 ... wu,)A| . | we have an endo-
Cn cn
1 0
) _ 0 1
morphism «. Since u; = (u; us ... Up) : s ug = (up us ... Up) s
0 0
0
0
Up = (ur w2 ... up) | . |, weknow that
1
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1 0O 0
0 1 0
(au; aus ... auy)=(ur uz ... up)A] . : )
0 0 1
:(Ul Us ... Un)A

This shows that ¢ is a mapping from R onto [K],. Let «, § be in R and let p(a) = A,

w(B) = B, ie, a(ur uz ... up) = (ug uz ... up)A, B(ur us ... uy) =
(up uy ... wuy)B. Assume p(a) = ¢(f), i.e., A= B. Then it follows that

a(up us ... up)=pF(ur uz ... uUp).
Since wuy, us, ..., u, are basis of Ly, this implies that &« = §. Thus we know that ¢

is a one-to-one mapping from R onto [K],. Let again «, # be in R and let p(a) = A,
©(B) = B. Then

(a+pB)(ur uy ... up)=a(u; us ... up)+0(ur u2 ... Uy)
=(ur uz ... up)A+(uws ur ... uy,)B

Thus ¢(a + ) = A + B. Furthermore,
(@B) (ur us ... up)=a(B(ur us ... up))=a((ur us ... u,)B)
=a(u; uy ... up)B=(uy us ... u,)AB,

which shows that ¢(a8) = AB. Therefore ¢ is a ring isomorphism from R onto [K],. Let

a be any element of K. Then

a(uy us ... up)=(auy aus ... au,)=(ura ua ... UpQ)

(up uy ... up)ak

where F is the identity matrix, i.e., the n X n matrix whose (¢,7)-components (1 < i < n)
are 1 and other components are all 0. Thus we know that (@) = aF whence p(K) = KE.
Let for each pair (4,j) with 1 <4,j < n E;; be the n x n matrix whose (i, j)-component

is 1 and other components are all 0. Then each A € [K],, whose (¢, j)-component is a;;
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(¢ K) can be expressed as A = ) a;;F;;. This implies that E;; (1 < 4,5 < n) are
linearly independent basis of [K],, over K. Thus the dimension of [K], over K is n?. Since
aA = aFEA for every a € K and A € [K],, this implies that [[K], : KE] = n?. Therefore
we know that [R : K] = n?.

Let o be any element of G. Then o is in R, because (lk)? = k% = [9k for every
| € L and k € K. Moreover, we have (ol)l' = o(ll') = (II')* = 11" = (I°0)l' for every
1,I' € L, which shows that ¢l = [°¢ for any [ € L and in particular ¢ = Lo. Therefore
Lo can be regarded as a two-sided L-module ffaf. Let 7 be another element of G such
that Lo and Lt are isomorphic as two-sided L-modules. Let i be the isomorphism and
u(o) = ar with a € L (a # 0 because o # 0). Then for every | € L pu(ol) = arl = al"r.
But since ol = 170, we also have u(ol) = l[°ar. It follows then that al” = [“a whence

I" =1° foreveryl € L, i.e., 0 =T.

Now, since L is a field, the left L-module ff is simple and therefore the two-sided
L-module ffaf is simple for every o € G. Let 01, 09, ..., 0, be all distinct elements of
G. Then if i # j, the corresponding +(Lo;)7 and 7(Lo;)t are not isomorphic. Consider
now S = Loy + Los + --- + Lo,,. Then S is a two-sided L-submodule of R. We want
to show that S = Loy @ Loy @ --- @ Lo,,. For the proof, consider first Loy N Los. If
Loy N Los # 0, then this is a non-zero submodule of Lo, and Lo,. But since both
f(fal)f and f(fag)f are simple, it follows that Loy N Loy is equal to Loy and to Loy
whence Loy = Los. But this contradicts to that oy # 0. Thus we have that Loy N Loy = 0
whence Lo, + Loy = Loy ® Los. Consider next S, = Loy + Los+---+ Lo, with 1 < r <n
and assume that S, = Loy ®Los®---® Lo,. Let P; (i = 1,2,...,r) be the projection from
S, to Lo;. Now suppose S, N Lo, # 0. Then since this is a non-zero submodule of the
simple two-sided module Lo, 1, this coincides with Lo, 1, i.e., Lo, C S,. Then there
must be a P; such that P; maps Lo, isomorphically onto Lo;. Then this contradicts to
that o; # 0,41. Thus S, N Lo,4; = 0 whence S, + Lo,41 = S, ® Lo,,,. By applying this
forr=2,...,n — 1 we know that S = Loy & Los & --- & Lo,,.

Since we have proved that [L : K] =n in I and ffai ~_ L for every i (1 <i<n), it
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follows that [Lo; : K| = n and therefore [S : K| = n%. But since S is a K-submodule of R
and we proved that [R : K] = n?, we can conclude that R =S =Y __, Lo, which shows

that L is a Galois extension of K relative to G.
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