ON ALGEBRAS ARISING FROM THE ELEMENTS OF A GALOIS GROUP FOR A GALOIS ALGEBRA

GORO AZUMAYA
Department of Mathematics, Indiana University
Bloomington, IN 47405, USA
GEORGE SZETO
Department of Mathematics, Bradley University
Peoria, Illinois 61625, USA
LIANYONG XUE
Department of Mathematics, Bradley University
Peoria, Illinois 61625, USA

Abstract

Let B be a ring with 1 and C the center of B. It is shown that if B is a Galois algebra over R with a finite Galois group $G, J_{g}=\{b \in B \mid b x=g(x) b$ for all $x \in B\}$ for each $g \in G$, and e_{g} an idempotent in C such that $B J_{g}=B e_{g}$, then the algebra $B(g)$ generated by $\left\{J_{h} \mid h \in G\right.$ and $\left.e_{h}=e_{g}\right\}$ for an $g \in G$ is a separable algebra over $R e_{g}$ and a central weakly Galois algebra with Galois group $K(g)$ generated by $\left\{h \in G \mid e_{h}=e_{g}\right\}$. Moreover, $\{B(g) \mid g \in G\}$ and $\{K(g) \mid g \in G\}$ are in a one-to-one correspondence, and three characterizations of a Galois extension are also given.

1. INTRODUCTION

The Boolean algebra of the idempotents in a commutative Galois algebra plays an important role ([2],[9]). For a noncommutative Galois algebra B over a commutative ring R with a finite Galois group G and center C, and $J_{g}=\{b \in B \mid b x=g(x) b$ for all $x \in B\}$ for each $g \in G$, it was shown that $B J_{g}=B e_{g}$ for some central idempotent $e_{g}(\in C)$ for any $g \in G$ ([5]). We note that the central idempotent e_{g} is uniquely determined by g in G. To see this, let e be a central idempotent of B. Then the mapping $b \longmapsto b e(b \in B)$ defines a ring epimorphism $B \longrightarrow B e$ because $\left(b+b^{\prime}\right) e=b e+b^{\prime} e$ and $\left(b b^{\prime}\right) e=(b e)\left(b^{\prime} e\right)$ for every $b, b^{\prime} \in B$. Thus, as the image of $1, e$ is the identity of the subring $B e$. Therefore if f is another central idempotent of B such that $B e=B f$, then f is also the identity of $B e$,

[^0]and so we know that $e=f$. Hence, in particular, if f is a central idempotent such that $B J_{g}=B f$, i.e., $B e_{g}=B f$, then it follows that $f=e_{g}$. Let B_{a} be the Boolean algebra generated by $\left\{0, e_{g} \mid g \in G\right\}$. Then a structure theorem for B was given by using B_{a} ([6]) and the subalgebra $\oplus \sum_{g \in K(1)} J_{g}$ was investigated where $K(1)=\left\{h \in G \mid e_{h}=1\right\}$ ([8]). We note that B is a central Galois algebra with Galois group G if and only if $K(1)=G$. Let $S(g)=\left\{h \in G \mid e_{h}=e_{g}\right\}$ for each $g \in G$. Then $S(1)=K(1)$, but $S(g)$ is not a subgroup of G for any $e_{g} \neq 1$ ([7]). Denote the subgroup generated by the elements in $S(g)$ by $K(g)$. The purpose of the present paper is to investigate a more general class of algebras $B(g)$ generated by $\left\{J_{h} \mid h \in S(g)\right\}$ for an $g \in G$. The major results are (1) $B(g)=\oplus \sum_{k \in K(g)} e_{g} J_{k},(2) B(g)$ is a separable algebra over $R e_{g},(3) B(g)$ is a central weakly Galois algebra with Galois group $K(g)$ where a weakly Galois algebra is in the sense of [9], and (4) there exists a one-to-one correspondence between the set of algebras $\{B(g) \mid g \in G\}$ and the set of subgroups $\{K(g) \mid g \in G\}$. Thus $B=\sum_{g \in G} B(g)$ such that $B(g)$ is a central weakly Galois algebra with Galois group $K(g)$ for each $g \in G$. Three remarkable characterizations of a Galois extension in section 5 were given by the first author. This paper was written under the support of a Caterpillar Fellowship at Bradley University. The authors would like to thank Caterpillar Inc. for the support.

2. BASIC NOTATIONS AND DEFINITIONS

Throughout this paper, B will represent a ring with 1 and G a finite automorphism group of B. We keep the definitions of a Galois extension, a Galois algebra, a central Galois algebra, a separable extension, and an Azumaya algebra as defined in ([6]).

From now on, let B be a Galois algebra over a commutative ring R with a finite Galois group G, C the center of $B, J_{g}=\{b \in B \mid b x=g(x) b$ for all $x \in B\}$ for each $g \in G, e_{g}$ a central idempotent in C such that $B J_{g}=B e_{g}([5]), S(g)=\left\{h \in G \mid e_{h}=e_{g}\right\}$ for each $g \in G, K(g)$ the subgroup of G generated by $\{h \mid h \in S(g)\}, B(g)$ the algebra contained in B generated by $\left\{J_{h} \mid h \in S(g)\right\}$ for each $g \in G$, and $J_{g}^{(A)}=\{a \in A \mid a x=g(x) a$ for all $x \in A\}$ for a subring A of B. A weakly Galois extension A with Galois group G is a finitely generated projective right module A over A^{G} such that $A_{l} G=\operatorname{Hom}_{A^{G}}(A, A)$ where
$A_{l}=\left\{a_{l}\right.$, the left multiplication map by $\left.a \in A\right\}$ and $\left(a_{l} g\right)(x)=a g(x)$ for each $a_{l} \in A_{l}$ and $x \in A([9])$. We call A a weakly Galois algebra with Galois group G if A is a weakly Galois extension with Galois group G such that A^{G} is contained in the center of A and that A is a central weakly Galois algebra with Galois group G if A is a weakly Galois extension with Galois group G such that A^{G} is the center of A. An Azumaya Galois extension A with Galois group G is a Galois extension A of A^{G} which is a C^{G}-Azumaya algebra where C is the center of $A([1])$. We call A an Azumaya weakly Galois extension with Galois group G if it is a weakly Galois extension of A^{G} which is a C^{G}-Azumaya algebra where C is the center of A.

3. THE SEPARABLE ALGEBRA $B(g)$

Let $g \in G$ and $B(g)$ the algebra generated by $\left\{J_{h} \mid h \in S(g)\right\}$. Keeping the notations in section 2, we shall show that $B(g)=\oplus \sum_{k \in K(g)} e_{g} J_{k}$ and that $B(g)$ is a separable algebra over $R e_{g}$. We begin with some lemmas.

LEMMA 3.1.

Let $G(g)=\left\{h \in G \mid h\left(e_{g}\right)=e_{g}\right\}$. Then $K(g)$ is a normal subgroup of $G(g)$.
PROOF. Clearly, $G(g)$ is a subgroup of G. Next, let $k \in S(g)$. Then $e_{k}=e_{g}$; and so $k\left(e_{g}\right)=k\left(e_{k}\right)=e_{k k k^{-1}}=e_{k}=e_{g}$. Hence $k \in G(g)$. Thus $S(g) \subset G(g)$. But $K(g)$ is the subgroup generated by the elements in $S(g)$ by the definition of $K(g)$, so $K(g)$ is a subgroup of $G(g)$. Next we show $K(g)$ is a normal subgroup of $G(g)$. For any $h \in G(g)$ and $k \in S(g)$, we have that $e_{h k h^{-1}}=h\left(e_{k}\right)=h\left(e_{g}\right)=e_{g}$, so $h k h^{-1} \in S(g)$. Clearly, $k^{-1} \in S(g)$ if $k \in S(g)$. Hence for any $k \in K(g), k=k_{1} k_{2} \cdots k_{m}$ for some integer m and some $k_{i} \in S(g), i=1,2, \cdots, m$. Thus, for any $h \in G(g), h k h^{-1}=h\left(k_{1} k_{2} \cdots k_{m}\right) h^{-1}=$ $\left(h k_{1} h^{-1}\right)\left(h k_{2} h^{-1}\right) \cdots\left(h k_{m} h^{-1}\right) \in K(g)$. Therefore $h K(g) h^{-1} \subset K(g)$ for any $h \in G(g)$. This proves that $K(g)$ is a normal subgroup of $G(g)$.

LEMMA 3.2.

$B e_{g}$ is a separable algebra over $R e_{g}$.

PROOF. Since B is a Galois algebra over R, B is a separable algebra over R. Hence $B e_{g}$ is a separable algebra over $R e_{g}$ ([3], Proposition 1.11, page 46).

LEMMA 3.3.

For each $h \in G(g), J_{h}^{\left(B e_{g}\right)}=e_{g} J_{h}$.
PROOF. See Lemma 3.3 in [6].

THEOREM 3.4.

$B(g)=\oplus \sum_{k \in K(g)} e_{g} J_{k}$.
PROOF. Since $B(g)$ is generated by $\left\{J_{h} \mid h \in S(g)\right\}$,
$B(g)=\left\{\sum\left(\Pi J_{h}\right)\right.$, a finite sum of finite products of J_{h} for some $\left.h \in S(g)\right\}$.
By Proposition 2 in [5], $J_{h} J_{h^{\prime}}=e_{h} J_{h h^{\prime}}=e_{g} J_{h h^{\prime}}$ for any $h, h^{\prime} \in S(g)$, so $\Pi J_{h}=e_{g} J_{\Pi h}$ for some $h \in S(g)$. Hence $B(g)=\sum_{k \in K(g)} e_{g} J_{k}$. But B is a Galois algebra over R with Galois group G, so $B=\oplus \sum_{g \in G} J_{g}$ ([5], Theorem 1). Noting that J_{h} is a C-module, we have that $e_{g} J_{h} \subset J_{h}$ for each $h \in K(g)$. Thus, the sum is direct, that is, $B(g)=\oplus \sum_{k \in K(g)} e_{g} J_{k}$.

THEOREM 3.5.

For each $k \in K(g), e_{k} e_{g}=e_{g}$.
PROOF. We want to prove that

$$
\begin{equation*}
e_{g_{1}} e_{g_{2}} \cdots e_{g_{n}}=e_{g_{2}} \cdots e_{g_{n}} e_{g_{1} g_{2} \cdots g_{n}} \tag{*}
\end{equation*}
$$

for any integer $n \geq 2$ and any elements $g_{1}, g_{2}, \cdots, g_{n}$ of G. Consider now the case for $n=2$. We know by Proposition 2 in [5] that $J_{g_{1}} J_{g_{2}}=e_{g_{2}} J_{g_{1} g_{2}}$, and so $e_{g_{1}} e_{g_{2}} B=$ $e_{g_{1}} B J_{g_{2}}=B J_{g_{1}} J_{g_{2}}=B e_{g_{2}} J_{g_{1} g_{2}}=e_{g_{2}} B J_{g_{1} g_{2}}=e_{g_{2}} e_{g_{1} g_{2}} B$. Since $e_{g_{1}} e_{g_{2}}$ and $e_{g_{2}} e_{g_{1} g_{2}}$ are central idempotents, we have

$$
\begin{equation*}
e_{g_{1}} e_{g_{2}}=e_{g_{2}} e_{g_{1} g_{2}} \text { for any } g_{1}, g_{2} \in G \tag{1}
\end{equation*}
$$

Now assume that $(*)$ is true for an $n(\geq 2)$ and any $g_{1}, g_{2}, \cdots, g_{n} \in G$. Let g_{n+1} be any element of G. Then by applying (1) to $g_{1} g_{2} \cdots g_{n}$ and g_{n+1} instead of g_{1} and g_{2}
respectively, we have

$$
\begin{equation*}
e_{g_{1} g_{2} \cdots g_{n}} e_{g_{n+1}}=e_{g_{n+1}} e_{g_{1} g_{2} \cdots g_{n} g_{n+1}} . \tag{2}
\end{equation*}
$$

Thus we conclude

$$
\begin{aligned}
e_{g_{1}} e_{g_{2}} \cdots e_{g_{n}} e_{g_{n+1}} & =\left(e_{g_{1}} e_{g_{2}} \cdots e_{g_{n}}\right) e_{g_{n+1}} \\
& =\left(e_{g_{2}} \cdots e_{g_{n}} e_{g_{1} g_{2} \cdots g_{n}}\right) e_{g_{n+1}} \text { by the assumption }(*) \\
& =\left(e_{g_{2}} \cdots e_{g_{n}}\right)\left(e_{g_{1} g_{2} \cdots g_{n}} e_{g_{n+1}}\right) \\
& =\left(e_{g_{2}} \cdots e_{g_{n}}\right)\left(e_{g_{n+1}} e_{g_{1} g_{2} \cdots g_{n} g_{n+1}}\right) \text { by }(2) \\
& =e_{g_{2}} \cdots e_{g_{n}} e_{g_{n+1}} e_{g_{1} g_{2} \cdots g_{n} g_{n+1}} .
\end{aligned}
$$

This shows by induction that $(*)$ holds for any $n \geq 2$ and any $g_{1}, g_{2}, \cdots, g_{n} \in G$.
Now assume that $h_{1}, h_{2}, \cdots, h_{n} \in S(g)$ for some integer n, so $e_{g}=e_{h_{1}}=e_{h_{2}}=\cdots=$ $e_{h_{n}}$. Then $e_{g}=e_{g} e_{h_{1} h_{2} \cdots h_{n}}$ by the above result (*). Let L be the set of those elements of G which are finite products of elements in $S(g)$. Then clearly L is closed under multiplication. Since $e_{h}=e_{h^{-1}}$ for any $h \in G\left([5]\right.$, Proposition 2-(3)), $e_{g}=e_{h}=e_{h^{-1}}$ for any $h \in S(g)$; and so $h^{-1} \in S(g)$. It follows that if $h=h_{1} h_{2} \cdots h_{n} \in L$ where $h_{1}, h_{2}, \cdots, h_{n} \in S(g)$ for some integer n, then $h^{-1}=h_{n}^{-1} \cdots h_{1}^{-1} \in L$. Thus L is a subgroup generated by the elements in $S(g)$; that is, $L=K(g)$. Therefore, for any element $k \in K(g), k=h_{1} h_{2} \cdots h_{n}$ where $h_{1}, h_{2}, \cdots, h_{n} \in S(g)$ for some integer n, we have that $e_{g}=e_{g} e_{k}$. This completes the proof.

Next is the main theorem in this section.

THEOREM 3.6.

$B(g)$ is a separable algebra over $R e_{g}$.

PROOF. Since B is a Galois algebra over R with Galois group G, there exists a $c \in C$ such that $\operatorname{Tr}_{G}(c)=1$ by the proof of proposition 5 in [5]. Let $\left\{K(g) g_{i} \mid g_{i} \in\right.$ $G, i=1,2, \cdots, m$ for some integer $m\}$ be the set of the right cosets of $K(g)$ in G and $d=\sum_{i=1}^{m} g_{i}(c)$. Then $\operatorname{Tr}_{K(g)}(d)=\sum_{k \in K(g)} k(d)=\sum_{k \in K(g)} \sum_{i=1}^{m} k g_{i}(c)=\operatorname{Tr}_{G}(c)=1$.

Hence $\operatorname{Tr}_{K(g)}\left(d e_{g} x\right)=e_{g} x$ for each $e_{g} x \in\left(e_{g} B\right)^{K(g)}$. Thus the map $\operatorname{Tr}_{K(g)}\left(d_{-}\right): e_{g} B \longrightarrow$ $\left(e_{g} B\right)^{K(g)}$ is a split bimodule homomorphism over $\left(e_{g} B\right)^{K(g)}$. This implies that $\left(e_{g} B\right)^{K(g)}$ is a direct summand of $e_{g} B$ as a bimodule over $\left(e_{g} B\right)^{K(g)}$. On the other hand, $e_{g} B$ is a Galois extension of $\left(e_{g} B\right)^{G(g)}$ with Galois group $G(g)$ by Lemma 3.7 in [6], so $e_{g} B$ is a Galois extension of $\left(e_{g} B\right)^{K(g)}$ with Galois group $K(g)$ for $K(g)$ is a subgroup of $G(g)$ by Lemma 3.1. Hence $e_{g} B$ is a finitely generated and projective left (or right) module over $\left(e_{g} B\right)^{K(g)}$. Thus $\left(e_{g} B\right)^{K(g)}$ is a separable algebra over $R e_{g}$ by the proof of Theorem 3.8 on page 55 in [3] because $B e_{g}$ is a separable algebra over $R e_{g}$ by Lemma 3.2. Next, we claim that $C e_{g} \subset\left(e_{g} B\right)^{K(g)}$. In fact, for any $c e_{g} \in C e_{g}, k \in K(g)$, and $x \in J_{k}$, we have that $\left(c e_{g}\right) x=x\left(c e_{g}\right)=k\left(c e_{g}\right) x$, so $\left(c e_{g}-k\left(c e_{g}\right)\right) x=0$. Hence $\left(c e_{g}-k\left(c e_{g}\right)\right) J_{k}=\{0\}$. But $J_{k} J_{k^{-1}}=e_{k} C$ ([5], Proposition 2), so $\left(c e_{g}-k\left(c e_{g}\right)\right) e_{k} C=\{0\}$. By Lemma 3.5, $e_{g} e_{k}=e_{g}$, so $\left(c e_{g}-k\left(c e_{g}\right)\right) C=\{0\}$. Thus $c e_{g}-k\left(c e_{g}\right)=0$, that is, $k\left(c e_{g}\right)=c e_{g}$. This implies that $C e_{g} \subset\left(e_{g} B\right)^{K(g)}$. Therefore $C e_{g}$ is contained in the center of $\left(e_{g} B\right)^{K(g)}$ for $C e_{g}$ is contained in the center of B. Consequently $\left(e_{g} B\right)^{K(g)}$ is separable over $C e_{g}$ ([3], Proposition 1.12, page 46). Moreover, since $B e_{g}$ is separable over $R e_{g}, B e_{g}$ is an Azumaya algebra over $C e_{g}$ and $C e_{g}$ is separable over $R e_{g}$ ([3], Theorem 3.8, page 55). Hence $V_{B e_{g}}\left(\left(e_{g} B\right)^{K(g)}\right)$ is separable over $C e_{g}$ by the commutator theorem for Azumaya algebras ([3], Theorem 4.3, page 57); and so it is separable over $R e_{g}$ by the transitivity of separable algebras. But, by Proposition 1 in [5], $V_{B e_{g}}\left(\left(e_{g} B\right)^{K(g)}\right)=\oplus \sum_{k \in K(g)} J_{k}^{\left(B e_{g}\right)}$, so $V_{B e_{g}}\left(\left(e_{g} B\right)^{K(g)}\right)=\oplus \sum_{k \in K(g)} e_{g} J_{k}$ by Lemma 3.3. Therefore $B(g)\left(=\oplus \sum_{k \in K(g)} e_{g} J_{k}\right.$ by Theorem 3.4) is a separable algebra over $R e_{g}$.

4. THE CENTRAL WEAKLY GALOIS ALGEBRA $B(g)$

We recall that an algebra A over a commutative ring R with a finite automorphism group G is called a weakly Galois extension with Galois group G if A is a finitely generated projective right A^{G}-module such that $A_{l} G=\operatorname{Hom}_{A^{G}}(A, A)$ where $A_{l}=\left\{a_{l}\right.$, the left multiplication map by $a \in A\}$. We shall show that $B(g)$ is a central weakly Galois algebra with Galois group $U(g)$ where $U(g)=K(g) / L$ and $L=\{k \in K(g) \mid k(a)=a$ for all
$a \in B(g)\}$. For each $k \in K(g), \bar{k}$ is denoted as the coset $k L \in U(g)$ and $\bar{k}(b)=k(b)$ for $b \in B(g)$.

LEMMA 4.1.

$(B(g))^{K(g)}=Z$, the center of $B(g)$.
PROOF. Let x be any element in $(B(g))^{K(g)}$ and b any element in $B(g)$. Then $b=\sum_{k \in K(g)} e_{g} b_{k}$ where $b_{k} \in J_{k}$ for each $k \in K(g)$ by Theorem 3.4. Hence

$$
b x=\sum_{k \in K(g)} e_{g} b_{k} x=\sum_{k \in K(g)} e_{g} k(x) b_{k}=\sum_{k \in K(g)} e_{g} x b_{k}=x \sum_{k \in K(g)} e_{g} b_{k}=x b .
$$

Thus $x \in Z$. Therefore $(B(g))^{K(g)} \subset Z$. Conversely, for any $z \in Z, k \in K(g)$, and $x \in J_{k}$, we have that $z x=x z=k(z) x$, so $(k(z)-z) x=0$ for any $x \in J_{k}$. Hence $(k(z)-z) J_{k}=\{0\}$. Noting that $J_{k} J_{k^{-1}}=e_{k} C$, we have that $(k(z)-z) e_{k} C=\{0\}$. By Lemma 3.5, $e_{g} C=e_{g} e_{k} C \subset e_{k} C$. Hence $(k(z)-z) e_{g} C=\{0\}$, so $(k(z)-z) e_{g}=0$, that is, $k\left(z e_{g}\right)=z e_{g}$. But z is in the center of $B(g)$ and $B(g)=\oplus \sum_{k \in K(g)} e_{g} J_{k}$, so $z e_{g}=z$. Thus $k(z)=z$ for any $z \in Z$ and $k \in K(g)$; and so $Z \subset(B(g))^{K(g)}$.

THEOREM 4.2.

$B(g)$ is a central weakly Galois algebra with Galois group $U(g)$, that is, $B(g)$ is a weakly Galois algebra over its center Z with Galois group $U(g)$.

PROOF. By Lemma 4.1, it suffices to show that $B(g)$ is a weakly Galois algebra with Galois group $U(g)$. In fact, by Theorem $3.6, B(g)$ is separable over $R e_{g}$, so $B(g)$ is an Azumaya algebra over Z. Hence $B(g)$ is a finitely generated projective module over Z $\left(=(B(g))^{U(g)}\right)$, and the map $f: B(g) \otimes_{Z}(B(g))^{o} \longrightarrow \operatorname{Hom}_{Z}(B(g), B(g))$ is an isomorphism ([3], Theorem 3.4, page 52) where $(B(g))^{o}$ is the opposite algebra of $B(g), f(a \otimes b)(x)=a x b$ for each $a \otimes b \in B(g) \otimes_{Z}(B(g))^{o}$ and each $x \in B(g)$. By denoting the left multiplication map with $a \in B(g)$ by a_{l} and the right multiplication map with $b \in B(g)$ by $b_{r}, f(a \otimes b)(x)=$ $a x b=\left(a_{l} b_{r}\right)(x)$. Since $B(g)=\oplus \sum_{k \in K(g)} e_{g} J_{k}, B(g) \otimes_{Z}(B(g))^{o} \cong \sum_{k \in K(g)}(B(g))_{l}\left(J_{k}\right)_{r}$. Observing that $\left(J_{k}\right)_{r}=\left(J_{k}\right)_{l} \bar{k}^{-1}$ where $\bar{k}=k L \in U(g)=K(g) / L$, we have that $B(g) \otimes_{Z}$
$(B(g))^{o} \cong \sum_{k \in K(g)}(B(g))_{l}\left(J_{k}\right)_{r}=\sum_{k \in K(g)}(B(g))_{l}\left(J_{k}\right)_{l} \bar{k}^{-1}=\sum_{k \in K(g)}\left(B(g) J_{k}\right)_{l} \bar{k}^{-1}$. Moreover, since $B(g)=\oplus \sum_{h \in K(g)} e_{g} J_{h}$ and $e_{g} e_{h}=e_{g}$ for each $h \in K(g), B(g) J_{k}=$ $\oplus \sum_{h \in K(g)} e_{g} J_{h} J_{k}=\oplus \sum_{h \in K(g)} e_{g} e_{h} J_{h k}=\oplus \sum_{h \in K(g)} e_{g} J_{h k}=B(g)$ for each $k \in K(g)$. Therefore $B(g) \otimes_{Z}(B(g))^{o} \cong \sum_{k \in K(g)}\left(B(g) J_{k}\right)_{l} \bar{k}^{-1}=\sum_{k \in K(g)}(B(g))_{l} \bar{k}^{-1}$ $=(B(g))_{l} U(g)$. Consequently $(B(g))_{l} U(g) \cong \operatorname{Hom}_{Z}(B(g), B(g))$. This completes the proof.

COROLLARY 4.3.

By keeping the notations of Theorem 4.2, $B=\sum_{g \in G} B(g)$, a sum of central weakly Galois algebras.

PROOF. Since B is a Galois algebra with Galois group $G, B=\oplus \sum_{g \in G} J_{g}$ ([5], Theorem 1). But $B(g)$ is generated by $\left\{J_{h} \mid h \in S(g)\right\}$ which contains J_{g}, so $J_{g} \subset B(g)$ for each $g \in G$. Thus $B=\sum_{g \in G} B(g)$ such that $B(g)$ is a central weakly Galois algebra by Theorem 4.2.

We recall that a Galois extension A with Galois group G is called an Azumaya Galois extension if A^{G} is an Azumaya algebra over C^{G} where C is the center of A. We define a weakly Galois extension A with Galois group G a weakly Azumaya Galois extension if A^{G} is an Azumaya algebra over C^{G}. As a consequence of Theorem 4.2, B(g) $(B(g))^{K(g)}$ can be shown to be a weakly Azumaya Galois extension with Galois group $U(g)$.

COROLLARY 4.4.

$$
\begin{aligned}
& \quad(B(g))\left(e_{g} B\right)^{K(g)} \text { is a weakly Azumaya Galois extension of }\left(e_{g} B\right)^{K(g)} \text { with Galois group } \\
& U(g)=K(g) / L
\end{aligned}
$$

PROOF. By Theorem 4.2, $(B(g))_{l} U(g) \cong \operatorname{Hom}_{Z}(B(g), B(g))$, so

$$
\begin{aligned}
\left((B(g))\left(e_{g} B\right)^{K(g)}\right)_{l} U(g) & \cong \operatorname{Hom}_{Z}(B(g), B(g))\left(e_{g} B\right)^{K(g)} \\
& \cong \operatorname{Hom}_{Z}(B(g), B(g)) \otimes_{Z}\left(e_{g} B\right)^{K(g)} \\
& \cong \operatorname{Hom}_{\left(e_{g} B\right)^{K(g)}}\left(B(g) \otimes_{Z}\left(e_{g} B\right)^{K(g)}, B(g) \otimes_{Z}\left(e_{g} B\right)^{K(g)}\right)
\end{aligned}
$$

Moreover, by the proof of Theorem 3.6, $B(g)$ and $\left(e_{g} B\right)^{K(g)}$ are Azumaya algebras over Z, so it is easy to see that $(B(g))\left(e_{g} B\right)^{K(g)} \cong B(g) \otimes_{Z}\left(e_{g} B\right)^{K(g)}$ which is a finitely generated projective module over $\left(e_{g} B\right)^{K(g)}$. Thus $(B(g))\left(e_{g} B\right)^{K(g)}$ is a weakly Azumaya Galois extension of $\left(e_{g} B\right)^{K(g)}$ with Galois group $U(g)=K(g) / L$.

Next we characterize a Galois extension $B(g)$ with Galois group $U(g)$.

THEOREM 4.5.

The following statements are equivalent:
(1) $B(g)$ is a central Galois algebra with Galois group $U(g)$.
(2) $B(g)$ is a Galois extension with Galois group $U(g)$.
(3) $J_{\bar{k}}^{(B(g))}=\oplus \sum_{l \in L} e_{g} J_{k l}$ for each $\bar{k} \in U(g)$.

PROOF. $(1) \Longrightarrow(2)$ is clear.
$(2) \Longrightarrow(1)$ is a consequence of Lemma 4.1.
$(1) \Longrightarrow(3)$ Let $B(g)$ be a central Galois algebra with Galois group $U(g)$. Then $B(g)=$ $\oplus \sum_{\bar{k} \in U(g)} J_{\bar{k}}^{(B(g))}\left([5]\right.$, Theorem 1). Next it is easy to check that $\oplus \sum_{l \in L} e_{g} J_{k l} \subset J_{\bar{k}}^{(B(g))}$ for each $k \in K(g)$. But $B(g)=\oplus \sum_{k \in K(g)} e_{g} J_{k}$ by Theorem 3.4, so $\oplus \sum_{k \in K(g)} e_{g} J_{k}=$ $\oplus \sum_{\bar{k} \in U(g)} J_{\bar{k}}^{(B(g))}$ (by Lemma 3.3) such that $\oplus \sum_{l \in L} e_{g} J_{k l} \subset J_{\bar{k}}^{(B(g))}$. Thus $J_{\bar{k}}^{(B(g))}=$ $\oplus \sum_{l \in L} e_{g} J_{k l}$ for each $\bar{k} \in U(g)$.
$(3) \Longrightarrow(1)$ Since $J_{\bar{k}}^{(B(g))}=\oplus \sum_{l \in L} e_{g} J_{k l}$ for each $\bar{k} \in U(g)$,

$$
B(g)=\oplus \sum_{k \in K(g)} e_{g} J_{k}=\oplus \sum_{\bar{k} \in U(g)} J_{\bar{k}}^{(B(g))} .
$$

Moreover, by Lemma 4.1, $(B(g))^{K(g)}=Z$, so $U(g)$ is an Z-automorphism group of $B(g)$. But then it is well known that $J_{\bar{k}}^{(B(g))} J_{\bar{k}^{-1}}^{(B(g))}=Z$ for each $\bar{k} \in U(g)$. Thus $B(g)$ is a central Galois algebra with Galois group $U(g)$ ([4], Theorem 1) for $B(g)$ is an Azumaya algebra over Z by Theorem 3.6.

5. A ONE-TO-ONE CORRESPONDENCE

In this section we shall establish a one-to-one correspondence between the set of algebras $\{B(g) \mid g \in G\}$ and the set of subgroups $\{K(g) \mid g \in G\}$, and give three remarkable characterizations of a Galois extension due to the first author.

LEMMA 5.1.

Let $\alpha: e_{g} \longrightarrow K(g)$. Then α is a bijection between $\left\{e_{g} \mid g \in G\right\}$ and $\{K(g) \mid g \in G\}$.
PROOF. Assume that $K(g)=K(h)$ for some $g, h \in G$. Since $h \in K(h), h \in K(g)$. Hence $e_{g}=e_{g} e_{h}$ by Lemma 3.5. Similarly, $e_{h}=e_{g} e_{h}$. Thus $e_{g}=e_{h}$; and so α is one-to-one. Clearly, α is onto. Therefore α is a bijection.

LEMMA 5.2.

Let $\beta: e_{g} \longrightarrow B(g)$. Then β is a bijection between $\left\{e_{g} \mid g \in G\right\}$ and $\{B(g) \mid g \in G\}$.
PROOF. Assume that $B(g)=B(h)$ for some $g, h \in G$. If $B(g)=B(h)=\{0\}$, then $e_{g}=0=e_{h}$. If $B(g)=B(h) \neq\{0\}$, noting that $e_{g} \in e_{g} C=e_{g} J_{1} \subset \oplus \sum_{k \in K(g)} e_{g} J_{k}=$ $B(g)$ by Theorem 3.4, we have that e_{g} is the identity of $B(g)$ and e_{h} is the identity of $B(h)$. Hence $e_{g}=e_{h}$. Thus β is one-to-one. Clearly, β is onto. Therefore β is a bijection.

Lemma 5.1 and Lemma 5.2 imply a one-to-one correspondence between $\{B(g) \mid g \in G\}$ and $\{K(g) \mid g \in G\}$.

THEOREM 5.3.

Let $\phi: K(g) \longrightarrow B(g)$. Then ϕ is a bijection between $\{K(g) \mid g \in G\}$ and $\{B(g) \mid g \in$ $G\}$.

PROOF. By Lemma 5.1 and Lemma 5.2, $\phi=\beta \alpha^{-1}$ is a bijection.

We conclude the present paper with two interesting equivalent conditions for a Galois extension of a ring and a characterization of a Galois extension of a field. Let L be a ring with a finite automorphism group $G, K=L^{G}$, and R the endomorphism ring of the right K-module L. Then L can be regarded as a two-sided R - K-module. For each $a \in L$, denote
by \bar{a} the mapping $x \longrightarrow a x(x \in L)$. Then \bar{a} is an endomorphism of L_{K}, i.e., $\bar{a} \in R$, and the mapping $a \longrightarrow \bar{a}$ an isomorphism from L into R. Let \bar{L} be the image of L by this isomorphism. Let σ be any element in G. Then σ is in R, because $(a x)^{\sigma}=a^{\sigma} x^{\sigma}=a^{\sigma} x$ for every $a \in L$ and $x \in K$. Moreover, we have $(\sigma \bar{a}) b=\sigma(a b)=(a b)^{\sigma}=a^{\sigma} b^{\sigma}=\left(\overline{a^{\sigma}} \sigma\right) b$ for any $a, b \in L$, which shows that $\sigma \bar{a}=\overline{a^{\sigma}} \sigma$ for any $a \in L$ and in particular $\sigma \bar{L}=\bar{L} \sigma$. Now L is called a Galois extension of K relative to G if the right K-module L is finitely generated and projective and $R=\sum_{\sigma \in G} \oplus \sigma \bar{L}$. Thus, without using the crossed product of L and G with trivial factor set, a Galois extension is characterized.

THEOREM A.

The following are equivalent:
A. L is a Galois extension of K relative to G.
B. There exist $x_{1}, \cdots, x_{n} ; y_{1}, \cdots, y_{n}$ in L such that

$$
\sum_{i=1}^{n} x_{i} y_{i}^{\sigma}= \begin{cases}1, & \text { if } \sigma=1 \\ 0, & \text { if } \sigma \neq 1\end{cases}
$$

PROOF. First we prove that A implies B : Assume A. Then L_{K} is finitely generated and projective, which means the existence of finite number of $x_{i} \in L$ and homomorphism $\phi_{i}: L_{K} \longrightarrow K_{K}(i=1,2, \ldots, n)$ such that $\sum_{i=1}^{n} x_{i} \phi_{i}(x)=x$ for all $x \in L$. Since $K \subset L$, each ϕ_{i} is an endomorphism of L_{K}, i.e., $\phi_{i} \in R$. Then the above equality can be written as $\left(\sum_{i=1}^{n} \bar{x}_{i} \phi_{i}\right) x=x$ for all $x \in L$. But this means the following equality: $\sum_{i=1}^{n} \bar{x}_{i} \phi_{i}=1$. Since $R=\sum_{\sigma \in G} \sigma \bar{L}$ by assumption A, each ϕ_{i} can be expressed as $\phi_{i}=\sum_{\sigma \in G} \sigma \bar{y}_{i, \sigma}$ with $y_{i, \sigma} \in L(1 \leq i \leq n, \sigma \in G)$. On the other hand, since $\phi_{i} x \in K$ for every $x \in L$, it follows that $\phi_{i} x=\tau\left(\phi_{i} x\right)=\left(\tau \phi_{i}\right) x$ for every $\tau \in G$ and $x \in L$ and hence $\phi_{i}=\tau \phi_{i}=\sum_{\sigma \in G} \tau \sigma \bar{y}_{i, \sigma}$ for every $\tau \in G$. Since R is a direct sum of $\sigma \bar{L}(\sigma \in G)$, this implies that $y_{i, \tau \sigma}=y_{i, \sigma}$ for every σ, τ in G and hence $y_{i, \sigma}$ is independent of σ and depends only on i. Therefore we can write $y_{i}=y_{i, \sigma}$ for every σ, so that we have $\phi_{i}=\left(\sum_{\sigma \in G} \sigma\right) \bar{y}_{i}$. It follows then $1=\sum_{i=1}^{n} \bar{x}_{i} \phi_{i}=\sum_{i=1}^{n} \bar{x}_{i}\left(\sum_{\sigma \in G} \sigma\right) \bar{y}_{i}=\sum_{\sigma \in G}\left(\sum_{i=1}^{n} \bar{x}_{i} \bar{y}_{i}^{\sigma}\right) \sigma$. From this we can conclude that $1=\sum_{i=1}^{n} x_{i} y_{i}$ and $0=\sum_{i=1}^{n} x_{i} y_{i}^{\sigma}$ if $\sigma \neq 1$.

Next we assume B. Let $\phi_{i}=\left(\sum_{\sigma \in G} \sigma\right) \bar{y}_{i}$ for each $i(1 \leq i \leq n)$. Then ϕ_{i} is in R and satisfies $\sum_{i=1}^{n} \bar{x}_{i} \phi_{i}=\sum_{i=1}^{n} \bar{x}_{i}\left(\sum_{\sigma \in G} \sigma\right) \bar{y}_{i}=\sum_{\sigma \in G}\left(\sum_{i=1}^{n} \bar{x}_{i} \overline{y_{i}^{\sigma}}\right) \sigma=1$. This implies that $\sum_{i=1}^{n} x_{i} \phi_{i}(x)=\sum_{i=1}^{n} x_{i}\left(\phi_{i} x\right)=\left(\sum_{i=1}^{n} \bar{x}_{i} \phi_{i}\right) x=x$ for every $x \in L$. Moreover, $\phi_{i}(x)=$ $\left(\sum_{\sigma \in G} \sigma\right)\left(y_{i} x\right)$ for every $x \in L$ and so for any $\tau \in G$ we have $\phi_{i}(x)^{\tau}=\tau\left(\sum_{\sigma \in G} \sigma\right)\left(y_{i} x\right)=$ $\left(\sum_{\sigma \in G} \tau \sigma\right)\left(y_{i} x\right)=\left(\sum_{\sigma \in G} \sigma\right)\left(y_{i} x\right)$ whence $\phi_{i}(x)^{\tau}=\phi_{i}(x)$ for every $x \in L$ and $\tau \in G$. Thus we know that $\phi_{i}(x)$ is in $L^{G}=K$ for every $x \in L$, i.e., ϕ_{i} is a homomorphism $L_{K} \longrightarrow K_{K}$ and therefore L_{K} is finitely generated and projective.

Let α be any endomorphism of L_{K}, i.e., $\alpha \in R$. Then we have $\left(\sum_{i=1}^{n} \overline{\alpha x_{i}} \phi_{i}\right) x=$ $\sum_{i=1}^{n} \overline{\alpha x_{i}} \phi_{i}(x)=\sum_{i=1}^{n}\left(\alpha x_{i}\right) \phi_{i}(x)$. But $\phi_{i}(x) \in K$, we have

$$
\sum_{i=1}^{n}\left(\alpha x_{i}\right) \phi_{i}(x)=\sum_{i=1}^{n} \alpha\left(x_{i} \phi_{i}(x)\right)=\alpha \sum_{i=1}^{n} x_{i} \phi_{i}(x)=\alpha x .
$$

Thus we have $\sum_{i=1}^{n} \overline{\alpha x_{i}} \phi_{i}=\alpha$. Since $\phi_{i} \in \sum_{\sigma \in G} \sigma \bar{L}$, this means that $\alpha \in \sum_{\sigma \in G} \sigma \bar{L}$. Therefore we know that $R=\sum_{\sigma \in G} \sigma \bar{L}$. Let $\sum_{\sigma \in G} \bar{a}_{\sigma} \sigma$ be any linear combination of $\sigma \in G$ with $a_{\sigma} \in L$. Then for each $\tau \in G$ we have $\sum_{i=1}^{n}\left(\sum_{\sigma \in G} \bar{a}_{\sigma} \sigma x_{i}\right) y_{i}^{\tau}=\sum_{i=1}^{n}\left(\sum_{\sigma \in G} a_{\sigma} x_{i}^{\sigma}\right) y_{i}^{\tau}$ $=\sum_{\sigma \in G} a_{\sigma} \sum_{i=1}^{n} x_{i}^{\sigma} y_{i}^{\tau}=\sum_{\sigma \in G} a_{\sigma}\left(\sum_{i=1}^{n} x_{i} y_{i}^{\tau \sigma^{-1}}\right)^{\sigma}=a_{\tau}$ because

$$
\sum_{i=1}^{n} x_{i} y_{i}^{\tau \sigma^{-1}}= \begin{cases}1, & \text { if } \sigma=\tau \\ 0, & \text { if } \sigma \neq \tau\end{cases}
$$

Therefore if $\sum_{\sigma \in G} \bar{a}_{\sigma} \sigma=0$, then it follows $a_{\tau}=0$ for every $\tau \in G$, which shows that R is a direct sum of $\bar{L} \sigma=\sigma \bar{L}$, i.e., $R=\sum_{\sigma \in G} \oplus \sigma \bar{L}$. Thus L is a Galois extension of K relative to G.

Next, consider L as a left K-module and let S be the endomorphism ring of ${ }_{K} L$. Then L can be regarded as a two-sided K - S-module. For each $a \in L$, denote by \underline{a} the mapping $x \longrightarrow x a(x \in L)$. Then \underline{a} is an endomorphism of ${ }_{K} L$, i.e., $\underline{a} \in S$, and the mapping $a \longrightarrow \underline{a}$ an isomorphism from L into S. Let \underline{L} be the image of L by this isomorphism, so that \underline{L} $(\cong L)$ is a subring of S and $\underline{a} \sigma=\sigma \underline{a^{\sigma}}$ for each $\sigma \in G$ and $a \in L$. Now L is called a left Galois extension of K relative to G if L as a left K-module is finitely generated and projective and $S=\sum_{\sigma \in G} \oplus \sigma \underline{L}$. Then it can be shown that a left Galois extension and a Galois extension are the same.

THEOREM B.

The following are equivalent:
A. L is a Galois extension of K relative to G.
$A_{l} . L$ is a left Galois extension of K relative to G.
PROOF. First we prove that A_{l} implies A : Assume A_{l}. Then ${ }_{K} L$ is finitely generated and projective, i.e., there exist finite number of $y_{i} \in L$ and homomorphism $\psi_{i}:_{K} L \longrightarrow_{K} K$ $(i=1,2, \ldots, n)$ such that $\sum_{i=1}^{n} \psi_{i}(x) y_{i}=x$ for all $x \in L$. But since $K \subset L$, each ψ_{i} is an endomorphism of ${ }_{K} L$, i.e., $\psi_{i} \in S$. Then we have $x \sum_{i=1}^{n} \psi_{i} \underline{y}_{i}=\sum_{i=1}^{n} \psi_{i}(x) y_{i}=x$ for all $x \in L$, which shows that $\sum_{i=1}^{n} \psi_{i} \underline{y}_{i}=1$. On the other hand, each ψ_{i} is in $S=\sum_{\sigma \in G} \sigma \underline{L}$ and therefore it is expressed as $\psi_{i}=\sum_{\sigma \in G} \underline{x}_{i, \sigma} \sigma$ with $x_{i, \sigma} \in L(1 \leq i \leq n, \sigma \in G)$. Since $x \psi_{i}=\psi_{i}(x) \in K$ for every i and $x \in L$, we have that $x\left(\psi_{i} \tau\right)=\psi_{i}(x) \tau=\psi_{i}(x)=x \psi_{i}$ for every $i, \tau \in G$ and $x \in L$, and thus $\psi_{i} \tau=\psi_{i}$ for every i and $\tau \in G$. But since $\psi_{i} \tau=\sum_{\sigma \in G} \underline{x}_{i, \sigma} \sigma \tau$ for every $\tau \in G$ and S is a direct sum of $\sigma \underline{L}(\sigma \in G)$, we know that $x_{i, \tau \sigma}=x_{i, \sigma}$ for every i and σ, τ in G and therefore $x_{i, \sigma}$ is independent of $\sigma \in G$, which means that if we put $x_{i}=x_{i, 1}$ then $x_{i}=x_{i, \sigma}$ for every $\sigma \in G$. Thus we have $\psi_{i}=\underline{x}_{i} \sum_{\sigma \in G} \sigma$ and therefore

$$
1=\sum_{i=1}^{n} \psi_{i} \underline{y}_{i}=\sum_{i=1}^{n} \underline{x}_{i}\left(\sum_{\sigma \in G} \sigma\right) \underline{y}_{i}=\sum_{\sigma \in G} \sigma \sum_{i=1}^{n}\left(\underline{x}_{i}^{\sigma} \underline{y}_{i}\right)=\sum_{\sigma \in G} \sigma \sum_{i=1}^{n} x_{i}^{\sigma} y_{i} .
$$

Since S is a direct sum of $\sigma \underline{L}(\sigma \in G)$, it follows that $\sum_{i=1}^{n} x_{i}^{\sigma} y_{i}=\left\{\begin{array}{ll}1, & \text { if } \sigma=1 \\ 0, & \text { if } \sigma \neq 1\end{array}\right.$ and therefore $\sum_{i=1}^{n} x_{i} y_{i}^{\sigma}=\left(\sum_{i=1}^{n} x_{i}^{\sigma^{-1}} y_{i}\right)^{\sigma}=\left\{\begin{array}{ll}1, & \text { if } \sigma=1 \\ 0, & \text { if } \sigma \neq 1 .\end{array}\right.$ Thus the condition B of Theorem A holds. Therefore by Theorem A we have the condition A.

Next we want to prove that A implies A_{l} : Assume A. Then by Theorem A, there exist $x_{1}, \cdots, x_{n} ; y_{1}, \cdots, y_{n}$ in L such that

$$
\sum_{i=1}^{n} x_{i} y_{i}^{\sigma}= \begin{cases}1, & \text { if } \sigma=1 \\ 0, & \text { if } \sigma \neq 1\end{cases}
$$

Then we have

$$
\sum_{i=1}^{n} x_{i}^{\sigma} y_{i}=\left(\sum_{i=1}^{n} x_{i} y_{i}^{\sigma^{-1}}\right)^{\sigma}= \begin{cases}1, & \text { if } \sigma=1 \\ 0, & \text { if } \sigma \neq 1\end{cases}
$$

Let $\psi_{i}=\underline{x}_{i} \sum_{\sigma \in G} \sigma$ for each $i(1 \leq i \leq n)$. Then ψ_{i} is in S and satisfies $\sum_{i=1}^{n} \psi_{i} \underline{y}_{i}=$ $\sum_{i=1}^{n} \underline{x}_{i}\left(\sum_{\sigma \in G} \sigma\right) \underline{y}_{i}=\sum_{\sigma \in G} \sigma \sum_{i=1}^{n} \underline{x}_{i}^{\sigma} \underline{y}_{i}=1$. Therefore we have

$$
\sum_{i=1}^{n} \psi_{i}(x) y_{i}=\sum_{i=1}^{n}\left(x \psi_{i}\right) y_{i}=x \sum_{i=1}^{n} \psi_{i} \underline{y}_{i}=x \text { for every } x \in L
$$

Furthermore, $\psi_{i}(x)^{\tau}=\left(x \psi_{i}\right)^{\tau}=\left(x \underline{x}_{i} \sum_{\sigma \in G} \sigma\right)^{\tau}=x\left(\underline{x}_{i} \sum_{\sigma \in G} \sigma \tau\right)=x \underline{x}_{i} \sum_{\sigma \in G} \sigma=x \psi_{i}=$ $\psi_{i}(x)$ for every $x \in L$ and $\tau \in G$ and this implies that $\psi_{i}(x)$ is in $L^{G}=K$ for every $x \in L$ and thus ψ_{i} is a homomorphism ${ }_{K} L \longrightarrow_{K} K$. This shows that ${ }_{K} L$ is finitely generated and projective.

The rest part of the proof is similar to the proof for the implication $B \Longrightarrow A$ of Theorem A. Namely, let β be any endomorphism of ${ }_{K} L$, i.e., $\beta \in S$. Then we have $x\left(\sum_{i=1}^{n} \psi_{i} \underline{y_{i} \beta}\right)=\sum_{i=1}^{n} \psi_{i}(x)\left(y_{i} \beta\right)=\left(\sum_{i=1}^{n} \psi_{i}(x) y_{i}\right) \beta=x \beta$ for every $x \in L$, and thus we know that $\sum_{i=1}^{n} \psi_{i} \underline{y_{i} \beta}=\beta$. Since $\psi_{i} \in \sum_{\sigma \in G} \sigma \underline{L}$, it follows that $\beta \in \sum_{\sigma \in G} \sigma \underline{L}$, which shows that $S=\sum_{\sigma \in G} \sigma \underline{L}$. Next let $\sum_{\sigma \in G} \sigma \underline{a}_{\sigma}$ be any linear combination of $\sigma \in G$ with coefficients $\underline{a}_{\sigma} \in \underline{L}$. Then we have, for each $\tau \in G, \sum_{i=1}^{n} x_{i}^{\tau}\left(y_{i}\left(\sum_{\sigma \in G} \sigma \underline{a}_{\sigma}\right)\right)=$ $\sum_{i=1}^{n} x_{i}^{\tau} \sum_{\sigma \in G} y_{i}^{\sigma} a_{\sigma}=\sum_{\sigma \in G}\left(\sum_{i=1}^{n} x_{i}^{\tau} y_{i}^{\sigma}\right) a_{\sigma}=\sum_{\sigma \in G}\left(\sum_{i=1}^{n} x_{i}^{\tau \sigma^{-1}} y_{i}\right)^{\sigma} a_{\sigma}=a_{\tau}$ because $\sum_{i=1}^{n} x_{i}^{\tau \sigma^{-1}} y_{i}=1$ if $\sigma=\tau$ and $=0$ if $\sigma \neq \tau$. Therefore it follows that $\sum_{\sigma \in G} \sigma \underline{a}_{\sigma}=0$, then $a_{\sigma}=0$ for every $\sigma \in G$. Thus we know that S is a direct sum of $\sigma \underline{L}(\sigma \in G)$, i.e., $S=\sum_{\sigma \in G} \oplus \sigma \underline{L}$. This completes the proof of our theorem.

THEOREM C.

Let L be a (commutative) field and G a finite group of automorphism of L and let $K=L^{G}$. Then K is a subfield of L and $[L: K]=n$, where n is the order of G, and moreover L is a Galois extension of K relative to G.

PROOF. I. First we prove that $[L: K]=n$. Let a be any element of L and let $G(a)=\left\{\sigma \in G \mid a^{\sigma}=a\right\}$. Then $G(a)$ is a subgroup of G. Let $n(a)=(G: G(a))$. Then $n(a) \mid n$ whence $n(a) \leq n$. Let σ, τ be in G. Then $a^{\sigma}=a^{\tau}$ if and only if $a^{\sigma \tau^{-1}}=$ a, i.e., $\sigma \tau^{-1} \in G(a)$, i.e., $G(a) \sigma=G(a) \tau$. Let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n(a)}$ be in G such that $G(a) \sigma_{1}, G(a) \sigma_{2}, \ldots, G(a) \sigma_{n(a)}$ are all distinct right cosets of $G \bmod G(a)$. Then for each
$\sigma \in G G(a) \sigma_{1} \sigma, G(a) \sigma_{2} \sigma, \ldots, G(a) \sigma_{n(a)} \sigma$ are all distinct right cosets of $G \bmod G(a)$. Consider now a polynomial $f(x)=\left(x-a^{\sigma_{1}}\right)\left(x-a^{\sigma_{2}}\right) \cdots\left(x-a^{\sigma_{n(a)}}\right)$ over L. Then for each $\sigma \in G$ we have $f(x)^{\sigma}=\left(x-a^{\sigma_{1} \sigma}\right)\left(x-a^{\sigma_{2} \sigma}\right) \cdots\left(x-a^{\sigma_{n(a)} \sigma}\right)=f(x)$. Therefore $f(x)$ is a polynomial over K and of degree $n(a)$. Let $G(a) \sigma_{e}=G(a)$, i.e., $\sigma_{e} \in G(a)$. Then $a^{\sigma_{e}}=a$. This implies that $f(a)=0$. Let $g(x)$ be a polynomial over K such that $g(a)=0$. Then we have $g\left(a^{\sigma_{1}}\right)=g(a)^{\sigma_{1}}=0$. Therefore $g(x)=\left(x-a^{\sigma_{1}}\right) g_{1}(x)$ with a polynomial $g_{1}(x)$ over L. Next we have $\left(a^{\sigma_{2}}-a^{\sigma_{1}}\right) g_{1}\left(a^{\sigma_{2}}\right)=g\left(a^{\sigma_{2}}\right)=g(a)^{\sigma_{2}}=0$. But $a^{\sigma_{1}} \neq a^{\sigma_{2}}$, i.e., $a^{\sigma_{2}}-a^{\sigma_{1}} \neq 0$, we have that $g_{1}\left(a^{\sigma_{2}}\right)=0$ and therefore $g_{1}(x)=$ $\left(x-a^{\sigma_{2}}\right) g_{2}(x)$ with a polynomial $g_{2}(x)$ over L. Thus we have $g(x)=\left(x-a^{\sigma_{1}}\right)\left(x-a^{\sigma_{2}}\right) g_{2}(x)$. Similarly, by considering $\sigma_{2}, \ldots, \sigma_{n(a)}$, we have a polynomial $g_{n(a)}(x)$ over L such that $g(x)=\left(x-a^{\sigma_{1}}\right)\left(x-a^{\sigma_{2}}\right) \cdots\left(x-a^{\sigma_{n(a)}}\right) g_{n(a)}(x)=f(x) g_{n(a)}(x)$. Thus $f(x)$ is a minimal polynomial of a over k, which shows that $[K(a): K]=n(a)$ and a is separable over K for every $a \in L$.

Now since $n(a) \leq n$ for every $a \in L$, we can choose $u \in L$ such that $n(u)$ is maximal, i.e., $n(a) \leq n(u)$ for every $a \in L$. Let a be any element of L, and consider $K(a, u)$. Then $K(a, u)$ is a finite whence separable extension of K, and therefore as is well known there exists a $b \in L$ such that $K(b)=K(a, u)$. It follows that $K(u) \subset K(b)$ whence $n(u) \leq n(b)$. But the maximality of $n(u)$ implies that $n(u)=n(b)$ whence $K(u)=K(b)$. Thus we know that $a \in K(u)$ for every $a \in L$, which means that $L=K(u)$ and so $[L: K]=n(u)$. Let now σ be any element of $G(u)$. Then $u^{\sigma}=u$ whence $a^{\sigma}=a$ for every $a \in L$, i.e., σ is the identity automorphism. Thus we know that $n(u)=n$ and so $[L: K]=n$.

By using this we shall prove
II. L is a Galois extension of K relative to G : First L is a finite extension of K, L_{K} is finitely generated. Next since K is a field, every K-module and in particular L_{K} is projective. Let R be the endomorphism ring of L_{K} and we regard L as a left R-module. For each $l \in L$, we denote by \bar{l} the mapping $x \longmapsto l x(x \in L)$. Then \bar{l} is an endomorphism of L_{K}, and the mapping $l \longmapsto \bar{l}$ is a ring isomorphism of L into R. We denote by \bar{L} the image of L by this isomorphism. Similarly we denote by \bar{K} the image of the subfield
K of L. Now let α be any endomorphism of L_{K}, i.e., $\alpha \in R$. Let a and l be any elements of K and L respectively. Then by using the commutativity of the field L we have $(\bar{a} \alpha) l=\bar{a}(\alpha l)=a(\alpha l)=(\alpha l) a=\alpha(l a)=\alpha(a l)=\alpha(\bar{a} l)=(\alpha \bar{a}) l$, which shows that $\bar{a} \alpha=\alpha \bar{a}$, i.e., \bar{a} is whence \bar{K} is in the center of R.

Let $\left(\begin{array}{llll}l_{1} & l_{2} & \ldots & l_{n}\end{array}\right)$ be any vector of length n with $l_{i}(i=1,2, \ldots, n)$ in L and α an endomorphism of L_{K}. Then we define

$$
\alpha\left(\begin{array}{llll}
l_{1} & l_{2} & \ldots & l_{n}
\end{array}\right)=\left(\begin{array}{llll}
\alpha l_{1} & \alpha l_{2} & \ldots & \alpha l_{n}
\end{array}\right) .
$$

Let β be another endomorphism of L_{K}. Then we can see that

$$
\begin{aligned}
\alpha \beta\left(\begin{array}{llll}
l_{1} & l_{2} & \ldots & l_{n}
\end{array}\right) & =\left(\begin{array}{llll}
\alpha \beta l_{1} & \alpha \beta l_{2} & \ldots & \alpha \beta l_{n}
\end{array}\right) \\
& =\alpha\left(\begin{array}{llll}
\beta l_{1} & \beta l_{2} & \ldots & \beta l_{n}
\end{array}\right) \\
& =\alpha\left(\begin{array}{llll}
\beta\left(\begin{array}{llll}
l_{1} & l_{2} & \ldots & l_{n}
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

Let $u_{1}, u_{2}, \ldots, u_{n}$ be a linearly independent basis of L_{K}. Let α be an endomorphism of L_{K}. Then for each $j, \alpha u_{j}$ is expressed as $\alpha u_{j}=\sum u_{i} a_{i j}$ with $a_{i j} \in K$. Then if we put A as the $n \times n$ matrix whose (i, j)-component is $a_{i j}$, we have $\left(\begin{array}{llll}\alpha u_{1} & \alpha u_{2} & \ldots & \alpha u_{n}\end{array}\right)=$ $\left(\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right) A$. Since $u_{1}, u_{2}, \ldots, u_{n}$ are linearly independent over K, A is uniquely determined by α. Thus by associating α with A we have a mapping φ from R into the set $[K]_{n}$ of all $n \times n$ matrices over K. Let conversely A be an $n \times n$ matrix over K. Let l be any element of L. Then $l=\left(\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right)\left(\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right)$ with a unique vector $\left(\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right)$ in K. Then by associating l with $\left(\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right) A\left(\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right)$ we have an endomorphism α. Since $u_{1}=\left(\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right), u_{2}=\left(\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right)\left(\begin{array}{c}0 \\ 1 \\ \vdots \\ 0\end{array}\right), \ldots$, $u_{n}=\left(\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right)\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 1\end{array}\right)$, we know that

$$
\begin{aligned}
\left(\begin{array}{llll}
\alpha u_{1} & \alpha u_{2} & \ldots & \alpha u_{n}
\end{array}\right) & =\left(\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right) A\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right) \\
& =\left(\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right) A .
\end{aligned}
$$

This shows that φ is a mapping from R onto $[K]_{n}$. Let α, β be in R and let $\varphi(\alpha)=A$, $\varphi(\beta)=B$, i.e., $\alpha\left(\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right)=\left(\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right) A, \beta\left(\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right)=$ $\left(\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right) B$. Assume $\varphi(\alpha)=\varphi(\beta)$, i.e., $A=B$. Then it follows that

$$
\alpha\left(\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right)=\beta\left(\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right) .
$$

Since $u_{1}, u_{2}, \ldots, u_{n}$ are basis of L_{K}, this implies that $\alpha=\beta$. Thus we know that φ is a one-to-one mapping from R onto $[K]_{n}$. Let again α, β be in R and let $\varphi(\alpha)=A$, $\varphi(\beta)=B$. Then

$$
\begin{aligned}
(\alpha+\beta)\left(\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right) & =\alpha\left(\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right)+\beta\left(\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right) \\
& =\left(\begin{array}{lllll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right) A+\left(\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right) B \\
& =\left(\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right)(A+B)
\end{aligned}
$$

Thus $\varphi(\alpha+\beta)=A+B$. Furthermore,

$$
\begin{aligned}
(\alpha \beta)\left(\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right) & =\alpha\left(\begin{array}{llll}
\left.\beta\left(\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right)\right)=\alpha\left(\begin{array}{llll}
\left(\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right) B
\end{array}\right) \\
& =\alpha\left(\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right) B=\left(\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right) A B
\end{array}\right.
\end{aligned}
$$

which shows that $\varphi(\alpha \beta)=A B$. Therefore φ is a ring isomorphism from R onto $[K]_{n}$. Let a be any element of K. Then

$$
\begin{aligned}
\bar{a}\left(\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right) & =\left(\begin{array}{llll}
a u_{1} & a u_{2} & \ldots & a u_{n}
\end{array}\right)=\left(\begin{array}{llll}
u_{1} a & u_{2} a & \ldots & u_{n} a
\end{array}\right) \\
& =\left(\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right) a E
\end{aligned}
$$

where E is the identity matrix, i.e., the $n \times n$ matrix whose (i, i)-components $(1 \leq i \leq n)$ are 1 and other components are all 0 . Thus we know that $\varphi(\bar{a})=a E$ whence $\varphi(\bar{K})=K E$. Let for each pair (i, j) with $1 \leq i, j \leq n E_{i j}$ be the $n \times n$ matrix whose (i, j)-component is 1 and other components are all 0 . Then each $A \in[K]_{n}$ whose (i, j)-component is $a_{i j}$
$(\in K)$ can be expressed as $A=\sum a_{i j} E_{i j}$. This implies that $E_{i j}(1 \leq i, j \leq n)$ are linearly independent basis of $[K]_{n}$ over K. Thus the dimension of $[K]_{n}$ over K is n^{2}. Since $a A=a E A$ for every $a \in K$ and $A \in[K]_{n}$, this implies that $\left[[K]_{n}: K E\right]=n^{2}$. Therefore we know that $[R: \bar{K}]=n^{2}$.

Let σ be any element of G. Then σ is in R, because $(l k)^{\sigma}=l^{\sigma} k^{\sigma}=l^{\sigma} k$ for every $l \in L$ and $k \in K$. Moreover, we have $(\sigma \bar{l}) l^{\prime}=\sigma\left(l l^{\prime}\right)=\left(l l^{\prime}\right)^{\sigma}=l^{\sigma} l^{\prime \sigma}=\left(\overline{\sigma^{\sigma}} \sigma\right) l^{\prime}$ for every $l, l^{\prime} \in L$, which shows that $\sigma \bar{l}=\overline{l^{\sigma}} \sigma$ for any $l \in L$ and in particular $\sigma \bar{L}=\bar{L} \sigma$. Therefore $\bar{L} \sigma$ can be regarded as a two-sided \bar{L}-module $\bar{L} \bar{L} \sigma_{\bar{L}}$. Let τ be another element of G such that $\bar{L} \sigma$ and $\bar{L} \tau$ are isomorphic as two-sided \bar{L}-modules. Let μ be the isomorphism and $\mu(\sigma)=\bar{a} \tau$ with $a \in L(a \neq 0$ because $\sigma \neq 0)$. Then for every $l \in L \mu(\sigma \bar{l})=\bar{a} \tau \bar{l}=\bar{a} \bar{\tau} \tau$. But since $\sigma \bar{l}=\overline{l^{\sigma}} \sigma$, we also have $\mu(\sigma \bar{l})=\overline{l \sigma} \bar{a} \tau$. It follows then that $a l^{\tau}=l^{\sigma} a$ whence $l^{\tau}=l^{\sigma}$ for every $l \in L$, i.e., $\sigma=\tau$.

Now, since L is a field, the left \bar{L}-module $\bar{L} \bar{L}$ is simple and therefore the two-sided \bar{L}-module $\bar{L} \bar{L} \sigma_{\bar{L}}$ is simple for every $\sigma \in G$. Let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ be all distinct elements of G. Then if $i \neq j$, the corresponding $\bar{L}\left(\bar{L} \sigma_{i}\right)_{\bar{L}}$ and ${ }_{\bar{L}}\left(\bar{L} \sigma_{j}\right)_{\bar{L}}$ are not isomorphic. Consider now $S=\bar{L} \sigma_{1}+\bar{L} \sigma_{2}+\cdots+\bar{L} \sigma_{n}$. Then S is a two-sided \bar{L}-submodule of R. We want to show that $S=\bar{L} \sigma_{1} \oplus \bar{L} \sigma_{2} \oplus \cdots \oplus \bar{L} \sigma_{n}$. For the proof, consider first $\bar{L} \sigma_{1} \cap \bar{L} \sigma_{2}$. If $\bar{L} \sigma_{1} \cap \bar{L} \sigma_{2} \neq 0$, then this is a non-zero submodule of $\bar{L} \sigma_{1}$ and $\bar{L} \sigma_{2}$. But since both ${ }_{\bar{L}}\left(\bar{L} \sigma_{1}\right)_{\bar{L}}$ and ${ }_{\bar{L}}\left(\bar{L} \sigma_{2}\right)_{\bar{L}}$ are simple, it follows that $\bar{L} \sigma_{1} \cap \bar{L} \sigma_{2}$ is equal to $\bar{L} \sigma_{1}$ and to $\bar{L} \sigma_{2}$ whence $\bar{L} \sigma_{1}=\bar{L} \sigma_{2}$. But this contradicts to that $\sigma_{1} \neq \sigma_{2}$. Thus we have that $\bar{L} \sigma_{1} \cap \bar{L} \sigma_{2}=0$ whence $\bar{L} \sigma_{1}+\bar{L} \sigma_{2}=\bar{L} \sigma_{1} \oplus \bar{L} \sigma_{2}$. Consider next $S_{r}=\bar{L} \sigma_{1}+\bar{L} \sigma_{2}+\cdots+\bar{L} \sigma_{r}$ with $1<r<n$ and assume that $S_{r}=\bar{L} \sigma_{1} \oplus \bar{L} \sigma_{2} \oplus \cdots \oplus \bar{L} \sigma_{r}$. Let $P_{i}(i=1,2, \ldots, r)$ be the projection from S_{r} to $\bar{L} \sigma_{i}$. Now suppose $S_{r} \cap \bar{L} \sigma_{r+1} \neq 0$. Then since this is a non-zero submodule of the simple two-sided module $\bar{L} \sigma_{r+1}$, this coincides with $\bar{L} \sigma_{r+1}$, i.e., $\bar{L} \sigma_{r+1} \subset S_{r}$. Then there must be a P_{i} such that P_{i} maps $\bar{L} \sigma_{r+1}$ isomorphically onto $\bar{L} \sigma_{i}$. Then this contradicts to that $\sigma_{i} \neq \sigma_{r+1}$. Thus $S_{r} \cap \bar{L} \sigma_{r+1}=0$ whence $S_{r}+\bar{L} \sigma_{r+1}=S_{r} \oplus \bar{L} \sigma_{r+1}$. By applying this for $r=2, \ldots, n-1$ we know that $S=\bar{L} \sigma_{1} \oplus \bar{L} \sigma_{2} \oplus \cdots \oplus \bar{L} \sigma_{n}$.

Since we have proved that $[L: K]=n$ in I and $\bar{L} \bar{L} \sigma_{i} \cong{ }_{\bar{L}} \bar{L}$ for every $i(1 \leq i \leq n)$, it
follows that $\left[\bar{L} \sigma_{i}: \bar{K}\right]=n$ and therefore $[S: \bar{K}]=n^{2}$. But since S is a \bar{K}-submodule of R and we proved that $[R: \bar{K}]=n^{2}$, we can conclude that $R=S=\sum_{\sigma \in G} \bar{L} \sigma$, which shows that L is a Galois extension of K relative to G.

REFERENCES

1. R. Alfaro and G. Szeto, On Galois extensions of an Azumaya algebra, Comm. in Algebra, 25(6), (1997), 1873-1882.
2. F.R. DeMeyer, Galois theory in separable algebras over commutative rings, Illinois J. Math., 10(1966), 287-295.
3. F.R. DeMeyer and E. Ingraham, Separable algebras over commutative rings, Vol. 181, Springer-Verlag, Berlin,1971.
4. M. Harada, Supplementary results on Galois extension, Osaka J. Math., 2(1965), 343350.
5. T. Kanzaki, On Galois algebra over a commutative ring, Osaka J. Math., 2(1965), 309-317.
6. G. Szeto and L. Xue, The structure of Galois algebras, Journal of Algebra, 237(1)(2001), 238-246.
7. G. Szeto and L. Xue, The Boolean algebra and central Galois algebras, International Journal of Mathematics and Mathematical Sciences, 28(4)(2001), 237-242.
8. G. Szeto and L. Xue, The Galois algebras and the Azumaya Galois extensions, International Journal of Mathematics and Mathematical Sciences, 31(1) (2002), 37-42.
9. O. E. Villamayor and D. Zelinsky, Galois theory with infinitely many idempotents, Nagoya Math. J. 35(1969), 83-98.

[^0]: AMS 2000 Subject Classification. 16S35, 16W20.
 Keywords and Phrases. Separable algebras, Galois algebras, central Galois algebras, weakly Galois algebras, Azumaya Galois extensions.

