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ABSTRACT. Let B be a ring with 1 and C the center of B. It is shown that if B
is a Galois algebra over R with a �nite Galois group G, Jg = fb 2 B j bx = g(x)b
for all x 2 Bg for each g 2 G, and eg an idempotent in C such that BJg = Beg,
then the algebra B(g) generated by fJh jh 2 G and eh = egg for an g 2 G is
a separable algebra over Reg and a central weakly Galois algebra with Galois
group K(g) generated by fh 2 G j eh = egg. Moreover, fB(g) j g 2 Gg and
fK(g) j g 2 Gg are in a one-to-one correspondence, and three characterizations of
a Galois extension are also given.

1. INTRODUCTION

The Boolean algebra of the idempotents in a commutative Galois algebra plays an

important role ([2],[9]). For a noncommutative Galois algebra B over a commutative ring

R with a �nite Galois group G and center C, and Jg = fb 2 B j bx = g(x)b for all x 2 Bg

for each g 2 G, it was shown that BJg = Beg for some central idempotent eg (2 C) for

any g 2 G ([5]). We note that the central idempotent eg is uniquely determined by g in

G. To see this, let e be a central idempotent of B. Then the mapping b 7�! be (b 2 B)

de�nes a ring epimorphism B �! Be because (b+ b0)e = be+ b0e and (bb0)e = (be)(b0e) for

every b; b0 2 B. Thus, as the image of 1, e is the identity of the subring Be. Therefore if f

is another central idempotent of B such that Be = Bf , then f is also the identity of Be,

AMS 2000 Subject Classi�cation. 16S35, 16W20.
Keywords and Phrases. Separable algebras, Galois algebras, central Galois algebras,

weakly Galois algebras, Azumaya Galois extensions.

1



and so we know that e = f . Hence, in particular, if f is a central idempotent such that

BJg = Bf , i.e., Beg = Bf , then it follows that f = eg. Let Ba be the Boolean algebra

generated by f0; eg j g 2 Gg. Then a structure theorem for B was given by using Ba ([6])

and the subalgebra �
P

g2K(1) Jg was investigated where K(1) = fh 2 G j eh = 1g ([8]).

We note that B is a central Galois algebra with Galois group G if and only if K(1) = G.

Let S(g) = fh 2 G j eh = egg for each g 2 G. Then S(1) = K(1), but S(g) is not a

subgroup of G for any eg 6= 1 ([7]). Denote the subgroup generated by the elements in

S(g) by K(g). The purpose of the present paper is to investigate a more general class

of algebras B(g) generated by fJh jh 2 S(g)g for an g 2 G. The major results are (1)

B(g) = �
P

k2K(g) egJk, (2) B(g) is a separable algebra over Reg, (3) B(g) is a central

weakly Galois algebra with Galois group K(g) where a weakly Galois algebra is in the

sense of [9], and (4) there exists a one-to-one correspondence between the set of algebras

fB(g) j g 2 Gg and the set of subgroups fK(g) j g 2 Gg. Thus B =
P

g2GB(g) such that

B(g) is a central weakly Galois algebra with Galois group K(g) for each g 2 G. Three

remarkable characterizations of a Galois extension in section 5 were given by the �rst

author. This paper was written under the support of a Caterpillar Fellowship at Bradley

University. The authors would like to thank Caterpillar Inc. for the support.

2. BASIC NOTATIONS AND DEFINITIONS

Throughout this paper, B will represent a ring with 1 and G a �nite automorphism

group of B. We keep the de�nitions of a Galois extension, a Galois algebra, a central

Galois algebra, a separable extension, and an Azumaya algebra as de�ned in ([6]).

From now on, let B be a Galois algebra over a commutative ring R with a �nite Galois

group G, C the center of B, Jg = fb 2 B j bx = g(x)b for all x 2 Bg for each g 2 G, eg

a central idempotent in C such that BJg = Beg ([5]), S(g) = fh 2 G j eh = egg for each

g 2 G, K(g) the subgroup of G generated by fh jh 2 S(g)g, B(g) the algebra contained

in B generated by fJh jh 2 S(g)g for each g 2 G, and J
(A)
g = fa 2 A j ax = g(x)a for

all x 2 Ag for a subring A of B. A weakly Galois extension A with Galois group G is a

�nitely generated projective right module A over AG such that AlG = HomAG(A;A) where
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Al = fal; the left multiplication map by a 2 Ag and (alg)(x) = ag(x) for each al 2 Al and

x 2 A ([9]). We call A a weakly Galois algebra with Galois group G if A is a weakly Galois

extension with Galois group G such that AG is contained in the center of A and that A is

a central weakly Galois algebra with Galois group G if A is a weakly Galois extension with

Galois group G such that AG is the center of A. An Azumaya Galois extension A with

Galois group G is a Galois extension A of AG which is a CG-Azumaya algebra where C is

the center of A ([1]). We call A an Azumaya weakly Galois extension with Galois group

G if it is a weakly Galois extension of AG which is a CG-Azumaya algebra where C is the

center of A.

3. THE SEPARABLE ALGEBRA B(g)

Let g 2 G and B(g) the algebra generated by fJh jh 2 S(g)g. Keeping the notations

in section 2, we shall show that B(g) = �
P

k2K(g) egJk and that B(g) is a separable

algebra over Reg. We begin with some lemmas.

LEMMA 3.1.

Let G(g) = fh 2 G jh(eg) = egg. Then K(g) is a normal subgroup of G(g).

PROOF. Clearly, G(g) is a subgroup of G. Next, let k 2 S(g). Then ek = eg; and

so k(eg) = k(ek) = ekkk�1 = ek = eg. Hence k 2 G(g). Thus S(g) � G(g). But K(g) is

the subgroup generated by the elements in S(g) by the de�nition of K(g), so K(g) is a

subgroup of G(g). Next we show K(g) is a normal subgroup of G(g). For any h 2 G(g)

and k 2 S(g), we have that ehkh�1 = h(ek) = h(eg) = eg, so hkh
�1 2 S(g). Clearly,

k�1 2 S(g) if k 2 S(g). Hence for any k 2 K(g), k = k1k2 � � � km for some integer m and

some ki 2 S(g), i = 1; 2; � � � ;m. Thus, for any h 2 G(g), hkh�1 = h(k1k2 � � � km)h
�1 =

(hk1h
�1)(hk2h

�1) � � � (hkmh
�1) 2 K(g). Therefore hK(g)h�1 � K(g) for any h 2 G(g).

This proves that K(g) is a normal subgroup of G(g).

LEMMA 3.2.

Beg is a separable algebra over Reg.
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PROOF. Since B is a Galois algebra over R, B is a separable algebra over R. Hence

Beg is a separable algebra over Reg ([3], Proposition 1.11, page 46).

LEMMA 3.3.

For each h 2 G(g), J
(Beg)
h = egJh.

PROOF. See Lemma 3.3 in [6].

THEOREM 3.4.

B(g) = �
P

k2K(g) egJk.

PROOF. Since B(g) is generated by fJh jh 2 S(g)g,

B(g) = f
P
(�Jh); a �nite sum of �nite products of Jh for some h 2 S(g)g:

By Proposition 2 in [5], JhJh0 = ehJhh0 = egJhh0 for any h; h
0 2 S(g), so �Jh = egJ�h for

some h 2 S(g). Hence B(g) =
P

k2K(g) egJk. But B is a Galois algebra over R with Galois

group G, so B = �
P

g2G Jg ([5], Theorem 1). Noting that Jh is a C-module, we have that

egJh � Jh for each h 2 K(g). Thus, the sum is direct, that is, B(g) = �
P

k2K(g) egJk.

THEOREM 3.5.

For each k 2 K(g), ekeg = eg.

PROOF. We want to prove that

(�) eg1eg2 � � � egn = eg2 � � � egneg1g2���gn

for any integer n � 2 and any elements g1; g2; � � � ; gn of G. Consider now the case

for n = 2. We know by Proposition 2 in [5] that Jg1Jg2 = eg2Jg1g2 , and so eg1eg2B =

eg1BJg2 = BJg1Jg2 = Beg2Jg1g2 = eg2BJg1g2 = eg2eg1g2B: Since eg1eg2 and eg2eg1g2 are

central idempotents, we have

(1) eg1eg2 = eg2eg1g2 for any g1; g2 2 G:

Now assume that (�) is true for an n(� 2) and any g1; g2; � � � ; gn 2 G. Let gn+1 be

any element of G. Then by applying (1) to g1g2 � � � gn and gn+1 instead of g1 and g2
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respectively, we have

(2) eg1g2���gnegn+1 = egn+1eg1g2���gngn+1 :

Thus we conclude

eg1eg2 � � � egnegn+1 = (eg1eg2 � � � egn)egn+1

= (eg2 � � � egneg1g2���gn)egn+1 by the assumption (�)

= (eg2 � � � egn)(eg1g2���gnegn+1)

= (eg2 � � � egn)(egn+1eg1g2���gngn+1) by (2)

= eg2 � � � egnegn+1eg1g2���gngn+1 :

This shows by induction that (�) holds for any n � 2 and any g1; g2; � � � ; gn 2 G.

Now assume that h1; h2; � � � ; hn 2 S(g) for some integer n, so eg = eh1 = eh2 = � � � =

ehn . Then eg = egeh1h2���hn by the above result (�). Let L be the set of those elements of G

which are �nite products of elements in S(g). Then clearly L is closed under multiplication.

Since eh = eh�1 for any h 2 G ([5], Proposition 2-(3)), eg = eh = eh�1 for any h 2 S(g);

and so h�1 2 S(g). It follows that if h = h1h2 � � �hn 2 L where h1; h2; � � � ; hn 2 S(g)

for some integer n, then h�1 = h�1n � � �h�11 2 L. Thus L is a subgroup generated by the

elements in S(g); that is, L = K(g). Therefore, for any element k 2 K(g), k = h1h2 � � �hn

where h1; h2; � � � ; hn 2 S(g) for some integer n, we have that eg = egek. This completes

the proof.

Next is the main theorem in this section.

THEOREM 3.6.

B(g) is a separable algebra over Reg.

PROOF. Since B is a Galois algebra over R with Galois group G, there exists a

c 2 C such that TrG(c) = 1 by the proof of proposition 5 in [5]. Let fK(g)gi j gi 2

G; i = 1; 2; � � � ;m for some integer mg be the set of the right cosets of K(g) in G and

d =
Pm

i=1 gi(c). Then TrK(g)(d) =
P

k2K(g) k(d) =
P

k2K(g)

Pm
i=1 kgi(c) = TrG(c) = 1.
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Hence TrK(g)(degx) = egx for each egx 2 (egB)
K(g). Thus the map TrK(g)(d ) : egB �!

(egB)
K(g) is a split bimodule homomorphism over (egB)

K(g). This implies that (egB)
K(g)

is a direct summand of egB as a bimodule over (egB)
K(g). On the other hand, egB is a

Galois extension of (egB)
G(g) with Galois group G(g) by Lemma 3.7 in [6], so egB is a

Galois extension of (egB)
K(g) with Galois group K(g) for K(g) is a subgroup of G(g) by

Lemma 3.1. Hence egB is a �nitely generated and projective left (or right) module over

(egB)
K(g). Thus (egB)

K(g) is a separable algebra over Reg by the proof of Theorem 3.8

on page 55 in [3] because Beg is a separable algebra over Reg by Lemma 3.2. Next, we

claim that Ceg � (egB)
K(g). In fact, for any ceg 2 Ceg, k 2 K(g), and x 2 Jk, we have

that (ceg)x = x(ceg) = k(ceg)x, so (ceg � k(ceg))x = 0. Hence (ceg � k(ceg))Jk = f0g.

But JkJk�1 = ekC ([5], Proposition 2), so (ceg � k(ceg))ekC = f0g. By Lemma 3.5,

egek = eg, so (ceg � k(ceg))C = f0g. Thus ceg � k(ceg) = 0, that is, k(ceg) = ceg. This

implies that Ceg � (egB)
K(g). Therefore Ceg is contained in the center of (egB)

K(g)

for Ceg is contained in the center of B. Consequently (egB)
K(g) is separable over Ceg

([3], Proposition 1.12, page 46). Moreover, since Beg is separable over Reg, Beg is an

Azumaya algebra over Ceg and Ceg is separable over Reg ([3], Theorem 3.8, page 55).

Hence VBeg ((egB)
K(g)) is separable over Ceg by the commutator theorem for Azumaya

algebras ([3], Theorem 4.3, page 57); and so it is separable over Reg by the transitivity

of separable algebras. But, by Proposition 1 in [5], VBeg ((egB)
K(g)) = �

P
k2K(g) J

(Beg)
k ,

so VBeg ((egB)
K(g)) = �

P
k2K(g) egJk by Lemma 3.3. Therefore B(g) (= �

P
k2K(g) egJk

by Theorem 3.4) is a separable algebra over Reg.

4. THE CENTRAL WEAKLY GALOIS ALGEBRA B(g)

We recall that an algebra A over a commutative ring R with a �nite automorphism

group G is called a weakly Galois extension with Galois group G if A is a �nitely generated

projective right AG-module such that AlG = HomAG(A;A) where Al = fal; the left

multiplication map by a 2 Ag. We shall show that B(g) is a central weakly Galois algebra

with Galois group U(g) where U(g) = K(g)=L and L = fk 2 K(g) j k(a) = a for all
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a 2 B(g)g. For each k 2 K(g), k is denoted as the coset kL 2 U(g) and k(b) = k(b) for

b 2 B(g).

LEMMA 4.1.

(B(g))K(g) = Z, the center of B(g).

PROOF. Let x be any element in (B(g))K(g) and b any element in B(g). Then

b =
P

k2K(g) egbk where bk 2 Jk for each k 2 K(g) by Theorem 3.4. Hence

bx =
X

k2K(g)

egbkx =
X

k2K(g)

egk(x)bk =
X

k2K(g)

egxbk = x
X

k2K(g)

egbk = xb:

Thus x 2 Z. Therefore (B(g))K(g) � Z. Conversely, for any z 2 Z, k 2 K(g), and

x 2 Jk, we have that zx = xz = k(z)x, so (k(z) � z)x = 0 for any x 2 Jk. Hence

(k(z) � z)Jk = f0g. Noting that JkJk�1 = ekC, we have that (k(z) � z)ekC = f0g. By

Lemma 3.5, egC = egekC � ekC. Hence (k(z) � z)egC = f0g, so (k(z) � z)eg = 0, that

is, k(zeg) = zeg. But z is in the center of B(g) and B(g) = �
P

k2K(g) egJk, so zeg = z.

Thus k(z) = z for any z 2 Z and k 2 K(g); and so Z � (B(g))K(g).

THEOREM 4.2.

B(g) is a central weakly Galois algebra with Galois group U(g), that is, B(g) is a

weakly Galois algebra over its center Z with Galois group U(g).

PROOF. By Lemma 4.1, it su�ces to show that B(g) is a weakly Galois algebra

with Galois group U(g). In fact, by Theorem 3.6, B(g) is separable over Reg, so B(g) is

an Azumaya algebra over Z. Hence B(g) is a �nitely generated projective module over Z

(= (B(g))U(g)), and the map f : B(g)
Z (B(g))
o �! HomZ(B(g); B(g)) is an isomorphism

([3], Theorem 3.4, page 52) where (B(g))o is the opposite algebra of B(g), f(a
b)(x) = axb

for each a
b 2 B(g)
Z(B(g))
o and each x 2 B(g). By denoting the left multiplication map

with a 2 B(g) by al and the right multiplication map with b 2 B(g) by br, f(a
 b)(x) =

axb = (albr)(x). Since B(g) = �
P

k2K(g) egJk, B(g)
Z (B(g))o �=
P

k2K(g)(B(g))l(Jk)r.

Observing that (Jk)r = (Jk)lk
�1

where k = kL 2 U(g) = K(g)=L, we have that B(g)
Z
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(B(g))o �=
P

k2K(g)(B(g))l(Jk)r =
P

k2K(g)(B(g))l(Jk)lk
�1

=
P

k2K(g)(B(g)Jk)lk
�1
.

Moreover, since B(g) = �
P

h2K(g) egJh and egeh = eg for each h 2 K(g), B(g)Jk =

�
P

h2K(g) egJhJk = �
P

h2K(g) egehJhk = �
P

h2K(g) egJhk = B(g) for each k 2 K(g).

Therefore B(g)
Z (B(g))o �=
P

k2K(g)(B(g)Jk)lk
�1

=
P

k2K(g)(B(g))lk
�1

= (B(g))lU(g). Consequently (B(g))lU(g) �= HomZ(B(g); B(g)). This completes the

proof.

COROLLARY 4.3.

By keeping the notations of Theorem 4.2, B =
P

g2GB(g), a sum of central weakly

Galois algebras.

PROOF. Since B is a Galois algebra with Galois group G, B = �
P

g2G Jg ([5],

Theorem 1). But B(g) is generated by fJh jh 2 S(g)g which contains Jg, so Jg � B(g)

for each g 2 G. Thus B =
P

g2GB(g) such that B(g) is a central weakly Galois algebra

by Theorem 4.2.

We recall that a Galois extension A with Galois group G is called an Azumaya Galois

extension if AG is an Azumaya algebra over CG where C is the center of A. We de�ne a

weakly Galois extension A with Galois group G a weakly Azumaya Galois extension if AG

is an Azumaya algebra over CG. As a consequence of Theorem 4.2, B(g)(B(g))K(g) can

be shown to be a weakly Azumaya Galois extension with Galois group U(g).

COROLLARY 4.4.�
B(g)

�
(egB)

K(g) is a weakly Azumaya Galois extension of (egB)
K(g) with Galois group

U(g) = K(g)=L.

PROOF. By Theorem 4.2, (B(g))lU(g) �= HomZ(B(g); B(g)), so

�
(B(g))(egB)

K(g)
�
l
U(g) �= HomZ(B(g); B(g))(egB)

K(g)

�= HomZ(B(g); B(g))
Z (egB)
K(g)

�= Hom(egB)K(g)(B(g)
Z (egB)
K(g); B(g)
Z (egB)

K(g)):
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Moreover, by the proof of Theorem 3.6, B(g) and (egB)
K(g) are Azumaya algebras over Z,

so it is easy to see that
�
B(g)

�
(egB)

K(g) �= B(g)
Z (egB)
K(g) which is a �nitely generated

projective module over (egB)
K(g). Thus

�
B(g)

�
(egB)

K(g) is a weakly Azumaya Galois

extension of (egB)
K(g) with Galois group U(g) = K(g)=L.

Next we characterize a Galois extension B(g) with Galois group U(g).

THEOREM 4.5.

The following statements are equivalent:

(1) B(g) is a central Galois algebra with Galois group U(g).

(2) B(g) is a Galois extension with Galois group U(g).

(3) J
(B(g))

k
= �

P
l2L egJkl for each k 2 U(g).

PROOF. (1) =) (2) is clear.

(2) =) (1) is a consequence of Lemma 4.1.

(1) =) (3) Let B(g) be a central Galois algebra with Galois group U(g). Then B(g) =

�
P

k2U(g) J
(B(g))

k
([5], Theorem 1). Next it is easy to check that �

P
l2L egJkl � J

(B(g))

k

for each k 2 K(g). But B(g) = �
P

k2K(g) egJk by Theorem 3.4, so �
P

k2K(g) egJk =

�
P

k2U(g) J
(B(g))

k
(by Lemma 3.3) such that �

P
l2L egJkl � J

(B(g))

k
. Thus J

(B(g))

k
=

�
P

l2L egJkl for each k 2 U(g).

(3) =) (1) Since J
(B(g))

k
= �

P
l2L egJkl for each k 2 U(g),

B(g) = �
X

k2K(g)

egJk = �
X

k2U(g)

J
(B(g))

k
:

Moreover, by Lemma 4.1, (B(g))K(g) = Z, so U(g) is an Z-automorphism group of B(g).

But then it is well known that J
(B(g))

k
J
(B(g))

k
�1 = Z for each k 2 U(g). Thus B(g) is a

central Galois algebra with Galois group U(g) ([4], Theorem 1) for B(g) is an Azumaya

algebra over Z by Theorem 3.6.
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5. A ONE-TO-ONE CORRESPONDENCE

In this section we shall establish a one-to-one correspondence between the set of al-

gebras fB(g) j g 2 Gg and the set of subgroups fK(g) j g 2 Gg, and give three remarkable

characterizations of a Galois extension due to the �rst author.

LEMMA 5.1.

Let � : eg �! K(g). Then � is a bijection between feg j g 2 Gg and fK(g) j g 2 Gg.

PROOF. Assume that K(g) = K(h) for some g; h 2 G. Since h 2 K(h), h 2 K(g).

Hence eg = egeh by Lemma 3.5. Similarly, eh = egeh. Thus eg = eh; and so � is one-to-one.

Clearly, � is onto. Therefore � is a bijection.

LEMMA 5.2.

Let � : eg �! B(g). Then � is a bijection between feg j g 2 Gg and fB(g) j g 2 Gg.

PROOF. Assume that B(g) = B(h) for some g; h 2 G. If B(g) = B(h) = f0g, then

eg = 0 = eh. If B(g) = B(h) 6= f0g, noting that eg 2 egC = egJ1 � �
P

k2K(g) egJk =

B(g) by Theorem 3.4, we have that eg is the identity of B(g) and eh is the identity of

B(h). Hence eg = eh. Thus � is one-to-one. Clearly, � is onto. Therefore � is a bijection.

Lemma 5.1 and Lemma 5.2 imply a one-to-one correspondence between fB(g) j g 2 Gg

and fK(g) j g 2 Gg.

THEOREM 5.3.

Let � : K(g) �! B(g). Then � is a bijection between fK(g) j g 2 Gg and fB(g) j g 2

Gg.

PROOF. By Lemma 5.1 and Lemma 5.2, � = ���1 is a bijection.

We conclude the present paper with two interesting equivalent conditions for a Galois

extension of a ring and a characterization of a Galois extension of a �eld. Let L be a ring

with a �nite automorphism group G, K = LG, and R the endomorphism ring of the right

K-module L. Then L can be regarded as a two-sided R-K-module. For each a 2 L, denote
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by a the mapping x �! ax (x 2 L). Then a is an endomorphism of LK , i.e., a 2 R, and

the mapping a �! a an isomorphism from L into R. Let L be the image of L by this

isomorphism. Let � be any element in G. Then � is in R, because (ax)� = a�x� = a�x

for every a 2 L and x 2 K. Moreover, we have (�a)b = �(ab) = (ab)� = a�b� = (a��)b

for any a; b 2 L, which shows that �a = a�� for any a 2 L and in particular �L = L�.

Now L is called a Galois extension of K relative to G if the right K-module L is �nitely

generated and projective and R =
P

�2G��L. Thus, without using the crossed product

of L and G with trivial factor set, a Galois extension is characterized.

THEOREM A.

The following are equivalent:

A: L is a Galois extension of K relative to G.

B: There exist x1; � � � ; xn; y1; � � � ; yn in L such that

nX
i=1

xiy
�
i =

�
1; if � = 1
0; if � 6= 1:

PROOF. First we prove that A implies B: Assume A. Then LK is �nitely generated

and projective, which means the existence of �nite number of xi 2 L and homomorphism

�i : LK �! KK (i = 1; 2; : : : ; n) such that
Pn

i=1 xi�i(x) = x for all x 2 L. Since K � L,

each �i is an endomorphism of LK , i.e., �i 2 R. Then the above equality can be written

as (
Pn

i=1 xi�i)x = x for all x 2 L. But this means the following equality:
Pn

i=1 xi�i = 1.

Since R =
P

�2G �L by assumption A, each �i can be expressed as �i =
P

�2G �yi;� with

yi;� 2 L (1 � i � n, � 2 G). On the other hand, since �ix 2 K for every x 2 L, it follows

that �ix = �(�ix) = (��i)x for every � 2 G and x 2 L and hence �i = ��i =
P

�2G ��yi;�

for every � 2 G. Since R is a direct sum of �L (� 2 G), this implies that yi;�� = yi;�

for every �, � in G and hence yi;� is independent of � and depends only on i. Therefore

we can write yi = yi;� for every �, so that we have �i = (
P

�2G �)yi. It follows then

1 =
Pn

i=1 xi�i =
Pn

i=1 xi(
P

�2G �)yi =
P

�2G(
Pn

i=1 xiy
�
i )�. From this we can conclude

that 1 =
Pn

i=1 xiyi and 0 =
Pn

i=1 xiy
�
i if � 6= 1.

11



Next we assume B. Let �i = (
P

�2G �)yi for each i (1 � i � n). Then �i is in R and

satis�es
Pn

i=1 xi�i =
Pn

i=1 xi(
P

�2G �)yi =
P

�2G(
Pn

i=1 xiy
�
i )� = 1. This implies thatPn

i=1 xi�i(x) =
Pn

i=1 xi(�ix) = (
Pn

i=1 xi�i)x = x for every x 2 L. Moreover, �i(x) =

(
P

�2G �)(yix) for every x 2 L and so for any � 2 G we have �i(x)
� = �(

P
�2G �)(yix) =

(
P

�2G ��)(yix) = (
P

�2G �)(yix) whence �i(x)
� = �i(x) for every x 2 L and � 2 G.

Thus we know that �i(x) is in LG = K for every x 2 L, i.e., �i is a homomorphism

LK �! KK and therefore LK is �nitely generated and projective.

Let � be any endomorphism of LK , i.e., � 2 R. Then we have (
Pn

i=1 �xi�i)x =Pn
i=1 �xi�i(x) =

Pn
i=1(�xi)�i(x). But �i(x) 2 K, we have

nX
i=1

(�xi)�i(x) =

nX
i=1

�(xi�i(x)) = �

nX
i=1

xi�i(x) = �x:

Thus we have
Pn

i=1 �xi�i = �. Since �i 2
P

�2G �L, this means that � 2
P

�2G �L.

Therefore we know that R =
P

�2G �L. Let
P

�2G a�� be any linear combination of � 2 G

with a� 2 L. Then for each � 2 G we have
Pn

i=1(
P

�2G a��xi)y
�
i =

Pn
i=1(

P
�2G a�x

�
i )y

�
i

=
P

�2G a�
Pn

i=1 x
�
i y

�
i =

P
�2G a�(

Pn
i=1 xiy

���1

i )� = a� because

nX
i=1

xiy
���1

i =

�
1; if � = �
0; if � 6= � .

Therefore if
P

�2G a�� = 0, then it follows a� = 0 for every � 2 G, which shows that R is

a direct sum of L� = �L, i.e., R =
P

�2G��L. Thus L is a Galois extension of K relative

to G.

Next, consider L as a left K-module and let S be the endomorphism ring of KL. Then

L can be regarded as a two-sided K-S-module. For each a 2 L, denote by a the mapping

x �! xa (x 2 L). Then a is an endomorphism of KL, i.e., a 2 S, and the mapping a �! a

an isomorphism from L into S. Let L be the image of L by this isomorphism, so that L

(�= L) is a subring of S and a� = �a� for each � 2 G and a 2 L. Now L is called a

left Galois extension of K relative to G if L as a left K-module is �nitely generated and

projective and S =
P

�2G��L. Then it can be shown that a left Galois extension and a

Galois extension are the same.

12



THEOREM B.

The following are equivalent:

A: L is a Galois extension of K relative to G.

Al: L is a left Galois extension of K relative to G.

PROOF. First we prove that Al implies A: Assume Al. Then KL is �nitely generated

and projective, i.e., there exist �nite number of yi 2 L and homomorphism  i :KL �!KK

(i = 1; 2; : : : ; n) such that
Pn

i=1  i(x)yi = x for all x 2 L. But since K � L, each  i is an

endomorphism of KL, i.e.,  i 2 S. Then we have x
Pn

i=1  iyi =
Pn

i=1  i(x)yi = x for all

x 2 L, which shows that
Pn

i=1  iyi = 1. On the other hand, each  i is in S =
P

�2G �L

and therefore it is expressed as  i =
P

�2G xi;�� with xi;� 2 L (1 � i � n, � 2 G). Since

x i =  i(x) 2 K for every i and x 2 L, we have that x( i�) =  i(x)� =  i(x) = x i

for every i, � 2 G and x 2 L, and thus  i� =  i for every i and � 2 G. But since

 i� =
P

�2G xi;��� for every � 2 G and S is a direct sum of �L (� 2 G), we know

that xi;�� = xi;� for every i and �, � in G and therefore xi;� is independent of � 2 G,

which means that if we put xi = xi;1 then xi = xi;� for every � 2 G. Thus we have

 i = xi
P

�2G � and therefore

1 =

nX
i=1

 iyi =

nX
i=1

xi(
X
�2G

�)y
i
=
X
�2G

�

nX
i=1

(x�i yi) =
X
�2G

�

nX
i=1

x�i yi:

Since S is a direct sum of �L (� 2 G), it follows that
Pn

i=1 x
�
i yi =

�
1; if � = 1
0; if � 6= 1

and

therefore
Pn

i=1 xiy
�
i = (

Pn
i=1 x

��1

i yi)
� =

�
1; if � = 1
0; if � 6= 1:

Thus the condition B of Theorem

A holds. Therefore by Theorem A we have the condition A.

Next we want to prove that A implies Al: Assume A. Then by Theorem A, there

exist x1; � � � ; xn; y1; � � � ; yn in L such that

nX
i=1

xiy
�
i =

�
1; if � = 1
0; if � 6= 1:

Then we have
nX
i=1

x�i yi = (

nX
i=1

xiy
��1

i )� =

�
1; if � = 1
0; if � 6= 1:
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Let  i = xi
P

�2G � for each i (1 � i � n). Then  i is in S and satis�es
Pn

i=1  iyi =Pn
i=1 xi(

P
�2G �)yi =

P
�2G �

Pn
i=1 x

�
i yi = 1. Therefore we have

nX
i=1

 i(x)yi =

nX
i=1

(x i)yi = x

nX
i=1

 iyi = x for every x 2 L:

Furthermore,  i(x)
� = (x i)

� = (xxi
P

�2G �)
� = x(xi

P
�2G ��) = xxi

P
�2G � = x i =

 i(x) for every x 2 L and � 2 G and this implies that  i(x) is in L
G = K for every x 2 L

and thus  i is a homomorphism KL �!KK. This shows that KL is �nitely generated and

projective.

The rest part of the proof is similar to the proof for the implication B =) A of

Theorem A. Namely, let � be any endomorphism of KL, i.e., � 2 S. Then we have

x(
Pn

i=1  iyi�) =
Pn

i=1  i(x)(yi�) = (
Pn

i=1  i(x)yi)� = x� for every x 2 L, and thus

we know that
Pn

i=1  iyi� = �. Since  i 2
P

�2G �L, it follows that � 2
P

�2G �L,

which shows that S =
P

�2G �L. Next let
P

�2G �a� be any linear combination of � 2 G

with coe�cients a� 2 L. Then we have, for each � 2 G,
Pn

i=1 x
�
i (yi(

P
�2G �a�)) =Pn

i=1 x
�
i

P
�2G y

�
i a� =

P
�2G(

Pn
i=1 x

�
i y

�
i )a� =

P
�2G(

Pn
i=1 x

���1

i yi)
�a� = a� becausePn

i=1 x
���1

i yi = 1 if � = � and = 0 if � 6= � . Therefore it follows that
P

�2G �a� = 0,

then a� = 0 for every � 2 G. Thus we know that S is a direct sum of �L (� 2 G), i.e.,

S =
P

�2G��L. This completes the proof of our theorem.

THEOREM C.

Let L be a (commutative) �eld and G a �nite group of automorphism of L and let

K = LG. Then K is a sub�eld of L and [L : K] = n, where n is the order of G, and

moreover L is a Galois extension of K relative to G.

PROOF. I. First we prove that [L : K] = n. Let a be any element of L and let

G(a) = f� 2 G j a� = ag. Then G(a) is a subgroup of G. Let n(a) = (G : G(a)).

Then n(a)
��n whence n(a) � n. Let �; � be in G. Then a� = a� if and only if a��

�1

=

a, i.e., ���1 2 G(a), i.e., G(a)� = G(a)� . Let �1; �2; : : : ; �n(a) be in G such that

G(a)�1; G(a)�2; : : : ; G(a)�n(a) are all distinct right cosets of G mod G(a). Then for each
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� 2 G G(a)�1�; G(a)�2�; : : : ; G(a)�n(a)� are all distinct right cosets of G mod G(a).

Consider now a polynomial f(x) = (x � a�1)(x � a�2) � � � (x � a�n(a)) over L. Then for

each � 2 G we have f(x)� = (x � a�1�)(x � a�2�) � � � (x � a�n(a)�) = f(x). Therefore

f(x) is a polynomial over K and of degree n(a). Let G(a)�e = G(a), i.e., �e 2 G(a).

Then a�e = a. This implies that f(a) = 0. Let g(x) be a polynomial over K such that

g(a) = 0. Then we have g(a�1) = g(a)�1 = 0. Therefore g(x) = (x � a�1)g1(x) with

a polynomial g1(x) over L. Next we have (a�2 � a�1)g1(a
�2) = g(a�2) = g(a)�2 = 0.

But a�1 6= a�2 , i.e., a�2 � a�1 6= 0, we have that g1(a
�2) = 0 and therefore g1(x) =

(x�a�2)g2(x) with a polynomial g2(x) over L. Thus we have g(x) = (x�a�1)(x�a�2)g2(x).

Similarly, by considering �2; : : : ; �n(a), we have a polynomial gn(a)(x) over L such that

g(x) = (x � a�1)(x � a�2) � � � (x � a�n(a))gn(a)(x) = f(x)gn(a)(x). Thus f(x) is a minimal

polynomial of a over k, which shows that [K(a) : K] = n(a) and a is separable over K for

every a 2 L.

Now since n(a) � n for every a 2 L, we can choose u 2 L such that n(u) is maximal,

i.e., n(a) � n(u) for every a 2 L. Let a be any element of L, and consider K(a; u). Then

K(a; u) is a �nite whence separable extension of K, and therefore as is well known there

exists a b 2 L such that K(b) = K(a; u). It follows that K(u) � K(b) whence n(u) � n(b).

But the maximality of n(u) implies that n(u) = n(b) whence K(u) = K(b). Thus we know

that a 2 K(u) for every a 2 L, which means that L = K(u) and so [L : K] = n(u). Let

now � be any element of G(u). Then u� = u whence a� = a for every a 2 L, i.e., � is the

identity automorphism. Thus we know that n(u) = n and so [L : K] = n.

By using this we shall prove

II. L is a Galois extension of K relative to G: First L is a �nite extension of K, LK

is �nitely generated. Next since K is a �eld, every K-module and in particular LK is

projective. Let R be the endomorphism ring of LK and we regard L as a left R-module.

For each l 2 L, we denote by l the mapping x 7�! lx (x 2 L). Then l is an endomorphism

of LK , and the mapping l 7�! l is a ring isomorphism of L into R. We denote by L

the image of L by this isomorphism. Similarly we denote by K the image of the sub�eld
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K of L. Now let � be any endomorphism of LK , i.e., � 2 R. Let a and l be any

elements of K and L respectively. Then by using the commutativity of the �eld L we

have (a�)l = a(�l) = a(�l) = (�l)a = �(la) = �(al) = �(al) = (�a)l, which shows that

a� = �a, i.e., a is whence K is in the center of R.

Let ( l1 l2 : : : ln ) be any vector of length n with li (i = 1; 2; : : : ; n) in L and � an

endomorphism of LK . Then we de�ne

� ( l1 l2 : : : ln ) = (�l1 �l2 : : : �ln ) :

Let � be another endomorphism of LK . Then we can see that

�� ( l1 l2 : : : ln ) = (��l1 ��l2 : : : ��ln )

= � (�l1 �l2 : : : �ln )

= �(� ( l1 l2 : : : ln )):

Let u1, u2, : : :, un be a linearly independent basis of LK . Let � be an endomorphism of

LK . Then for each j, �uj is expressed as �uj =
P
uiaij with aij 2 K. Then if we put

A as the n � n matrix whose (i; j)-component is aij , we have (�u1 �u2 : : : �un ) =

(u1 u2 : : : un )A: Since u1, u2, : : :, un are linearly independent over K, A is uniquely

determined by �. Thus by associating � with A we have a mapping ' from R into the

set [K]n of all n � n matrices over K. Let conversely A be an n � n matrix over K.

Let l be any element of L. Then l = (u1 u2 : : : un )

0
BB@
c1
c2
...
cn

1
CCA with a unique vector

0
BB@
c1
c2
...
cn

1
CCA in K. Then by associating l with (u1 u2 : : : un )A

0
BB@
c1
c2
...
cn

1
CCA we have an endo-

morphism �. Since u1 = (u1 u2 : : : un )

0
BB@
1
0
...
0

1
CCA, u2 = (u1 u2 : : : un )

0
BB@
0
1
...
0

1
CCA, : : :,

un = (u1 u2 : : : un )

0
BB@
0
0
...
1

1
CCA, we know that
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(�u1 �u2 : : : �un ) = (u1 u2 : : : un )A

0
BB@
1 0 : : : 0
0 1 : : : 0
...

...
. . .

...
0 0 : : : 1

1
CCA

= (u1 u2 : : : un )A:

This shows that ' is a mapping from R onto [K]n. Let �, � be in R and let '(�) = A,

'(�) = B, i.e., � (u1 u2 : : : un ) = (u1 u2 : : : un )A, � (u1 u2 : : : un ) =

(u1 u2 : : : un )B: Assume '(�) = '(�), i.e., A = B. Then it follows that

� (u1 u2 : : : un ) = � (u1 u2 : : : un ) :

Since u1, u2, : : :, un are basis of LK , this implies that � = �. Thus we know that '

is a one-to-one mapping from R onto [K]n. Let again �, � be in R and let '(�) = A,

'(�) = B. Then

(�+ �) (u1 u2 : : : un ) = � (u1 u2 : : : un ) + � (u1 u2 : : : un )

= (u1 u2 : : : un )A+ (u1 u2 : : : un )B

= (u1 u2 : : : un ) (A+B):

Thus '(�+ �) = A+B. Furthermore,

(��) (u1 u2 : : : un ) = �(� (u1 u2 : : : un )) = �
�
(u1 u2 : : : un )B

�

= � (u1 u2 : : : un )B = (u1 u2 : : : un )AB;

which shows that '(��) = AB. Therefore ' is a ring isomorphism from R onto [K]n. Let

a be any element of K. Then

a (u1 u2 : : : un ) = ( au1 au2 : : : aun ) = (u1a u2a : : : una )

= (u1 u2 : : : un ) aE

where E is the identity matrix, i.e., the n� n matrix whose (i; i)-components (1 � i � n)

are 1 and other components are all 0. Thus we know that '(a) = aE whence '(K) = KE.

Let for each pair (i; j) with 1 � i; j � n Eij be the n � n matrix whose (i; j)-component

is 1 and other components are all 0. Then each A 2 [K]n whose (i; j)-component is aij

17



(2 K) can be expressed as A =
P
aijEij . This implies that Eij (1 � i; j � n) are

linearly independent basis of [K]n over K. Thus the dimension of [K]n over K is n2. Since

aA = aEA for every a 2 K and A 2 [K]n, this implies that
�
[K]n : KE

�
= n2. Therefore

we know that [R : K] = n2.

Let � be any element of G. Then � is in R, because (lk)� = l�k� = l�k for every

l 2 L and k 2 K. Moreover, we have (�l)l0 = �(ll0) = (ll0)� = l�l0� = (l��)l0 for every

l; l0 2 L, which shows that �l = l�� for any l 2 L and in particular �L = L�. Therefore

L� can be regarded as a two-sided L-module
L
L�

L
. Let � be another element of G such

that L� and L� are isomorphic as two-sided L-modules. Let � be the isomorphism and

�(�) = a� with a 2 L (a 6= 0 because � 6= 0). Then for every l 2 L �(�l) = a�l = al�� .

But since �l = l��, we also have �(�l) = l�a� . It follows then that al� = l�a whence

l� = l� for every l 2 L, i.e., � = � .

Now, since L is a �eld, the left L-module
L
L is simple and therefore the two-sided

L-module
L
L�

L
is simple for every � 2 G. Let �1, �2, : : :, �n be all distinct elements of

G. Then if i 6= j, the corresponding
L
(L�i)L and

L
(L�j)L are not isomorphic. Consider

now S = L�1 + L�2 + � � � + L�n. Then S is a two-sided L-submodule of R. We want

to show that S = L�1 � L�2 � � � � � L�n. For the proof, consider �rst L�1 \ L�2. If

L�1 \ L�2 6= 0, then this is a non-zero submodule of L�1 and L�2. But since both

L
(L�1)L and

L
(L�2)L are simple, it follows that L�1 \ L�2 is equal to L�1 and to L�2

whence L�1 = L�2. But this contradicts to that �1 6= �2. Thus we have that L�1\L�2 = 0

whence L�1+L�2 = L�1�L�2. Consider next Sr = L�1+L�2+ � � �+L�r with 1 < r < n

and assume that Sr = L�1�L�2�� � ��L�r. Let Pi (i = 1; 2; : : : ; r) be the projection from

Sr to L�i. Now suppose Sr \ L�r+1 6= 0. Then since this is a non-zero submodule of the

simple two-sided module L�r+1, this coincides with L�r+1, i.e., L�r+1 � Sr. Then there

must be a Pi such that Pi maps L�r+1 isomorphically onto L�i. Then this contradicts to

that �i 6= �r+1. Thus Sr \L�r+1 = 0 whence Sr +L�r+1 = Sr �L�r+1. By applying this

for r = 2; : : : ; n� 1 we know that S = L�1 � L�2 � � � � � L�n.

Since we have proved that [L : K] = n in I and
L
L�i �=L

L for every i (1 � i � n), it
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follows that [L�i : K] = n and therefore [S : K] = n2. But since S is a K-submodule of R

and we proved that [R : K] = n2, we can conclude that R = S =
P

�2G L�, which shows

that L is a Galois extension of K relative to G.
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