On Characterizations of a Center Galois Extension

by

George Szeto and Lianyong Xue

Abstract. Let \(B \) be a ring with 1, \(C \) the center of \(B \), \(G \) a finite automorphism group of \(B \), and \(B^G \) the set of elements in \(B \) fixed under each element in \(G \). Then, it is shown that \(B \) is a center Galois extension of \(B^G \) (that is, \(C \) is a Galois algebra over \(C^G \) with Galois group \(G|_C \cong G \)) if and only if the ideal of \(B \) generated by \(\{ c - g(c) \mid c \in C \} \) is \(B \) for each \(g \neq 1 \) in \(G \). This generalizes the well known characterization of a commutative Galois extension \(C \) that \(C \) is a Galois extension of \(C^G \) with Galois group \(G \) if and only if the ideal generated by \(\{ c - g(c) \mid c \in C \} \) is \(C \) for each \(g \neq 1 \) in \(G \). Some more characterizations of a center Galois extension \(B \) are also given.

Key Words and Phrases. Galois extensions, Center Galois extensions, Central extensions, Galois central extensions, Azumaya algebras, Separable extensions, and \(H \)-separable extensions.

AMS 1991 Subject Classification Codes: 16S30; 16W20

1. Introduction. Let \(C \) be a commutative ring with 1, \(G \) a finite automorphism group of \(C \), and \(C^G \) the set of elements in \(C \) fixed under each element in \(G \). It is well known that a commutative Galois extension \(C \) is characterized in terms of the ideals generated by \(\{ c - g(c) \mid c \in C \} \) for \(g \neq 1 \) in \(G \), that is, \(C \) is a Galois extension with Galois group \(G \) if and only if the ideal generated by \(\{ c - g(c) \mid c \in C \} \) is \(C \) for each \(g \neq 1 \) in \(G \) ([3], Proposition 1.2, p.80). A natural generalization of a commutative Galois extension is the notion of a center Galois extension, that is, a noncommutative ring \(B \) with a finite automorphism group \(G \) and center \(C \) is called a center Galois extension of \(B^G \) with Galois group \(G \) if \(C \) is a Galois extension of \(C^G \) with Galois group \(G|_C \cong G \). S. Ikeda ([4],[5]) characterized a center Galois extension with a cyclic Galois group \(G \) of prime order in terms of a skew
polynomial ring. Then, the present authors generalized the Ikeda characterization to center Galois extensions with Galois group G of any cyclic order ([7]) and to center Galois extensions with any finite Galois group G ([8]). The purpose of the present paper is to generalize the above characterization of a commutative Galois extension to a center Galois extension. We shall show that B is a center Galois extension of B^G if and only if the ideal of B generated by $\{e - g(c) \mid c \in C\}$ is B for each $g \neq 1$ in G. A center Galois extension B is also equivalent to each of the following statements: (i) B is a Galois central extension of B^G, that is, $B = B^G C$ which is a G-Galois extension of B^G. (ii) B is a Galois extension of B^G with a Galois system $\{b_i \in B, a_i \in C, i = 1, 2, ..., m\}$ for some integer m, and (iii) the ideal of the subring $B^G C$ generated by $\{e - g(c) \mid c \in C\}$ is $B^G C$ for each $g \neq 1$ in G.

2. Definitions and Notations. Throughout this paper, B will represent a ring with 1, $G = \{g_1 = 1, g_2, \cdots, g_n\}$ an automorphism group of B of order n for some integer n, C the center of B, B^G the set of elements in B fixed under each element in G, and $B \ast G$ a skew group ring in which the multiplication is given by $gb = g(b)g$ for $b \in B$ and $g \in G$.

B is called a G-Galois extension of B^G if there exist elements $\{a_i, b_i \in B, i = 1, 2, ..., m\}$ for some integer m such that $\sum_{i=1}^{m} a_i g(b_i) = \delta_{i,j}$. Such a set $\{a_i, b_i\}$ is called a G-Galois system for B. B is called a center Galois extension of B^G if C is a Galois algebra over C^G with Galois group $G|C \equiv G$. B is called a central extension of B^G if $B = B^G C$, and B is called a Galois central extension of B^G if $B = B^G C$ is a Galois extension of B^G with Galois group G.

Let A be a subring of a ring B with the same identity 1. We denote $V_B(A)$ the commutator subring of A in B. We call B a separable extension of A if there exist $\{a_i, b_i \in B, i = 1, 2, ..., m\}$ for some integer m such that $\sum a_i b_i = 1$, and $\sum b_i \otimes b_i = \sum a_i \otimes b_i b$ for all b in B where \otimes is over A. B is called a H-separable extension of A if $B \otimes_A B$ is isomorphic to a direct summand of a finite direct sum of B as a B-bimodule. B is called centrally projective over A if B is a direct summand of a finite direct sum of A as a A-bimodule.

3. The Characterizations. In this section, we denote $J_j^{(C)} = \{e - g_j(c) \mid c \in C\}$. We shall show that B is a center Galois extension of B^G if and only if $B = B J_j^{(C)}$,
the ideal of B generated by $J_j^{(C)}$, for each $g_j \neq 1$ in G. Some more characterizations of a center Galois extension B are also given. We begin with a lemma.

Lemma 3.1. If $B = BJ_j^{(C)}$ for each $g_j \neq 1$ in G (that is, $j \neq 1$), then

1. B is a Galois extension of B^G with Galois group G and a Galois system $\{b_i \in B; c_i \in C, i = 1, 2, \ldots, m\}$ for some integer m.
2. B is centrally projective over B^G.
3. $B \ast G$ is H-separable over B.
4. $V_{B^G}(B) = C$.

Proof. (1) Since $B = BJ_j^{(C)}$ for each $j \neq 1$ in G, there exist $\{b_i^{(j)} \in B, c_i^{(j)} \in C, i = 1, 2, \ldots, m_j\}$ for some integer m_j, $j = 2, 3, \ldots, n$ such that $\sum_{i=1}^{m_j} b_i^{(j)} c_i^{(j)} - g_j(c_i^{(j)}) = 1$. Therefore, $\sum_{i=1}^{m_j} b_i^{(j)} c_i^{(j)} = 1 + \sum_{i=1}^{m_j} b_i^{(j)} g_j(c_i^{(j)})$. Let $b_i^{(j)} = -\sum_{i=1}^{m_j} b_i^{(j)} g_j(c_i^{(j)})$ and $c_i^{(j)} + 1 = 1$. Then $\sum_{i=1}^{m_j+1} b_i^{(j)} c_i^{(j)} = 1$ and $\sum_{i=1}^{m_j+1} b_i^{(j)} g_j(c_i^{(j)}) = 0$. Let $b_{i_2, i_3, \ldots, i_s} = b_i^{(2)} b_i^{(3)} \cdots b_i^{(n)}$ and $c_{i_2, i_3, \ldots, i_s} = c_i^{(2)} c_i^{(3)} \cdots c_i^{(n)}$ for $i_j = 1, 2, \ldots, m_j + 1$ and $j = 2, 3, \ldots, n$. Then

\[
\sum_{i_2=1}^{m_2+1} \sum_{i_3=1}^{m_3+1} \cdots \sum_{i_s=1}^{m_s+1} b_{i_2, i_3, \ldots, i_s} c_{i_2, i_3, \ldots, i_s}
\]

\[
= \sum_{i_2=1}^{m_2+1} \sum_{i_3=1}^{m_3+1} \cdots \sum_{i_s=1}^{m_s+1} b_{i_2}^{(2)} b_{i_3}^{(3)} \cdots b_{i_s}^{(n)} c_{i_2}^{(2)} c_{i_3}^{(3)} \cdots c_{i_s}^{(n)}
\]

\[
= \sum_{i_2=1}^{m_2+1} \sum_{i_3=1}^{m_3+1} \cdots \sum_{i_s=1}^{m_s+1} b_{i_2}^{(2)} c_{i_2}^{(3)} \cdots c_{i_s}^{(n)}
\]

\[
= 1
\]

and for each $j \neq 1$

\[
\sum_{i_2=1}^{m_2+1} \sum_{i_3=1}^{m_3+1} \cdots \sum_{i_s=1}^{m_s+1} b_{i_2, i_3, \ldots, i_s} g_j(c_{i_2, i_3, \ldots, i_s})
\]

\[
= \sum_{i_2=1}^{m_2+1} \sum_{i_3=1}^{m_3+1} \cdots \sum_{i_s=1}^{m_s+1} b_{i_2}^{(2)} c_{i_2}^{(3)} \cdots c_{i_s}^{(n)}
\]

\[
= \sum_{i_2=1}^{m_2+1} \sum_{i_3=1}^{m_3+1} \cdots \sum_{i_s=1}^{m_s+1} b_{i_2}^{(2)} c_{i_2}^{(3)} \cdots c_{i_s}^{(n)}
\]

3
Thus, \(b_{i_2,i_3,\ldots,i_n} \in B; c_{i_2,i_3,\ldots,i_n} \in C, i_j = 1, 2, \ldots, m_j + 1 \) and \(j = 2, 3, \ldots n \) is a Galois system for \(B \). This completes the proof of (1).

(2) By (1), \(B \) is a Galois extension of \(B^G \) with a Galois system \(\{ b_i \in B, c_i \in C, i = 1, 2, \ldots, m \} \) for some integer \(m \). Let \(f_i : B \rightarrow B^G \) given by \(f_i(b) = \sum_{j=1}^{m} g_j(c_i b) \) for all \(b \in B, i = 1, 2, \ldots, m \). Then, it is easy to check that \(f_i \) is a homomorphism as \(B^G \)-bimodule and \(b = \sum_{i=1}^{m} b_i c_i b = \sum_{i=1}^{m} b_i g_j(c_i) g_j(b) = \sum_{i=1}^{m} b_i \sum_{j=1}^{m} g_j(c_i b) = \sum_{i=1}^{m} b_i f_i(b) \) for all \(b \in B \). Hence \(\{ b_i, f_i, i = 1, 2, \ldots, m \} \) is a dual bases for \(B \) as \(B^G \)-bimodule, and so \(B \) is finitely generated and projective as \(B^G \)-bimodule. Therefore, \(B \) is a direct summand of a finite direct sum of \(B^G \) as a \(B^G \)-bimodule. Thus \(B \) is centrally projective over \(B^G \).

(3) By (1), \(B \) is a Galois extension of \(B^G \) with Galois group \(G \). Hence \(B \ast G \cong \text{Hom}_{B^G}(B, B) \) ([2], Theorem 1). By (2), \(B \) is centrally projective over \(B^G \). Thus, \(B \ast G \) (\(\cong \text{Hom}_{B^G}(B, B) \)) is \(H \)-separable over \(B \) ([6], Proposition 11).

(4) We first claim that \(V_{B^G}(C) = B \). Clearly, \(B \subseteq V_{B^G}(C) \). Let \(\sum_{j=1}^{n} b_j g_j \) in \(V_{B^G}(C) \) for some \(b_j \in B \). Then \(e(\sum_{j=1}^{n} b_j g_j) = (\sum_{j=1}^{n} b_j g_j) e \) for each \(e \) in \(C \), so \(eb_j = b_j g_j(e) \), that is, \(b_j(e - g_j(e)) = 0 \) for each \(g_j \in G \) and \(e \in C \). Since \(B = B J_1(C) \) for each \(g_j \neq 1 \), there exist \(b_j^{(j)} \in B \) and \(c_i^{(j)} \in C \), \(i = 1, 2, \ldots, m \) such that \(\sum_{i=1}^{m} b_j^{(j)} c_i^{(j)} = 0 \) for each \(g_j \). This implies that \(\sum_{j=1}^{n} b_j g_j = b_1 \in B \). Hence \(V_{B^G}(C) \subseteq B \), and so \(V_{B^G}(C) = B \). Therefore, \(V_{B^G}(B) \subseteq V_{B^G}(C) = B \). Thus \(V_{B^G}(B) = V_B(B) = C \).

We now show some characterizations of a center Galois extension \(B \).

THEOREM 3.2. The following statements are equivalent.

(1) \(B \) is a center Galois extension of \(B^G \).

(2) \(B = B J_{j}^{(C)} \) for each \(g_j \neq 1 \) in \(G \).

(3) \(B \) is a Galois extension of \(B^G \) with a Galois system \(\{ b_i \in B, c_i \in C, i = 1, 2, \ldots, m \} \) for some integer \(m \).
(4) B is a Galois central extension of B^G.

(5) $B^G C = B^G C J_j^{(C)}$ for each $g_j \neq 1$ in G.

PROOF. (1) \Rightarrow (2) By hypothesis, C is a Galois extension of C^G with Galois group $G|C \cong G$. Hence $C = C J_j^{(C)}$ for each $g_j \neq 1$ in G ([3], Proposition 1.2, p.80). Thus, $B = B J_j^{(C)}$ for each $g_j \neq 1$ in G.

(2) \Rightarrow (1) Since $B = B J_j^{(C)}$ for each $g_j \neq 1$ in G, $B \ast G$ is H-separable over B by Lemma 3.1-(3) and $V_{B \ast G}(B) = C$ by Lemma 3.1-(4). Thus, C is a Galois extension of C^G with Galois group $G|C \cong G$ by ([1], Proposition 4).

(1) \Rightarrow (3) This is Lemma 3.1-(1).

(3) \Rightarrow (1) Since B is a Galois extension of B^G with a Galois system $\{b_i \in B, c_i \in C, i = 1, 2, \ldots, m\}$ for some integer m, we have $\sum_{i=1}^{m} b_i g_j (c_i) = \delta_{1,j}$. Hence $\sum_{i=1}^{m} b_i (c_i - g_j (c_i)) = 1$ for each $g_j \neq 1$ in G. So for every $b \in B$, $b = \sum_{i=1}^{m} b_i (c_i - g_j (c_i)) \in B J_j^{(C)}$. Therefore, $B = B J_j^{(C)}$ for each $g_j \neq 1$ in G. Thus, B is a center Galois extension of B^G by (2) \Rightarrow (1).

(1) \Rightarrow (4) Since C is a Galois algebra with Galois group $G|C \cong G$, B and $B^G C$ are Galois extensions of B^G with Galois group $G|B \ast C \cong G$. Noting that $B^G C \subset B$, we have $B = B^G C$, that is, B is a central extension of B^G. But B is a Galois extension of B^G, so B is a Galois central extension of B^G.

(4) \Rightarrow (1) By hypothesis, $B = B^G C$ is a Galois extension of B^G. Hence there exists a Galois system $\{a_i; b_k \in B, i = 1, 2, \ldots, m\}$ for some integer m such that $\sum_{i=1}^{m} a_i g_j (b_k) = \delta_{1,j}$ But $B = B^G C$, so $a_i = \sum_{k=1}^{m} b_k^{(a_i)} c_k^{(a_i)}$ and $b_k = \sum_{l=1}^{n_k} b_l^{(a_i)} c_l^{(a_i)}$ for some $b_k^{(a_i)}, c_k^{(a_i)}$ in B^G and $a_i^{(a_i)}, c_i^{(a_i)}$ in C, $k = 1, 2, \ldots, n_k$, $i = 1, 2, \ldots, m$. Therefore,

$$
\delta_{1,j} = \sum_{i=1}^{m} a_i g_j (b_k) = \sum_{i=1}^{m} \sum_{k=1}^{n_k} b_k^{(a_i)} c_k^{(a_i)} g_j (b_k^{(a_i)} c_l^{(a_i)}) = \sum_{i=1}^{m} \sum_{k=1}^{n_k} b_k^{(a_i)} c_k^{(a_i)} \sum_{l=1}^{n_k} b_l^{(a_i)} c_l^{(a_i)} g_j (c_l^{(a_i)}) = \sum_{i=1}^{m} \sum_{k=1}^{n_k} b_k^{(a_i)} c_k^{(a_i)} \sum_{l=1}^{n_k} b_l^{(a_i)} c_l^{(a_i)} g_j (c_l^{(a_i)}).
$$

This shows that $\{b_k^{(a_i)}, c_k^{(a_i)} \in B; c_k^{(a_i)} = c_i^{(a_i)} \in C, k = 1, 2, \ldots, n_k, i = 1, 2, \ldots, m\}$ is a Galois system for B. Thus, B is a center Galois extension of B^G by (3) \Rightarrow (1).

(1) \Rightarrow (5) Since B is a center Galois extension of B^G, $B = B J_j^{(C)}$ for each $g_j \neq 1$ in G by (1) \Rightarrow (2) and $B = B^G C$ by (1) \Rightarrow (4). Thus, $B^G C = B^G C J_j^{(C)}$ for each $g_j \neq 1$ in G. 5
(5) \implies (1) Since $B^G C = B^G C J_j^{(C)}$ for each $g_j \neq 1$ in G, $B = B J_j^{(C)}$ for each $g_j \neq 1$ in G. Thus, B is a center Galois extension of B^G by (2) \implies (1).

The characterization of a commutative Galois extension C in terms of the ideals generated by \{c - g(c) | c \in C\} for $g \neq 1$ in G is an immediate consequence of Theorem 3.2.

COROLLARY 3.3. A commutative ring C is a Galois extension of C^G if and only if $C = C J_j^{(C)}$, the ideal generated by \{c - g_j(c) | c \in C\} is C for each $g_j \neq 1$ in G.

PROOF. Let $B = C$ in Theorem 3.2. Then, the corollary is an immediate consequence of Theorem 3.2-(2).

By Theorem 3.2, we derive several characterizations of a Galois central extension B.

COROLLARY 3.4. If B is a central extension of B^G (that is, $B = B^G C$), then the following statements are equivalent.

1. B is a Galois extension of B^G.
2. B is a center Galois extension of B^G.
3. $B * G$ is H-separable over B.
4. $B = C J_j^{(B)}$ for each $g_j \neq 1$ in G.
5. $B = B J_j^{(B)}$ for each $g_j \neq 1$ in G.

PROOF. (1) \iff (2) This is given by (1) \iff (4) in Theorem 3.2.
3. \implies (1) This is Lemma 3.1-(3).

Since $B = B^G C$ by hypothesis, it is easy to see that $J_j^{(B)} = B^G J_j^{(C)}$ for each g_j in G. Thus, $B = C J_j^{(B)}$, $B = B J_j^{(B)}$, and $B = B J_j^{(C)}$ are equivalent. This implies that (2) \iff (4) \iff (5) by Theorem 3.2-(2).

We call a ring B the DeMeyer-Kanzaki Galois extension of B^G if B is an Azumaya C-algebra and B is a center Galois extension of B^G (for more about the DeMeyer-Kanzaki
Galois extensions, see [2]). Clearly, the class of center Galois extensions is broader than the class of the DeMey er-Kanzaki Galois extensions. We conclude the present paper with two examples. (1) the DeMey er-Kanzaki Galois extension of B^G and (2) a center Galois extension of B^G, but not the DeMey er-Kanzaki Galois extension of B^G.

EXAMPLE 1. Let C be the field of complex numbers, that is, $C = R + R\sqrt{-1}$ where R is the field of real numbers, $B = C[i, j, k]$ the quaternion algebra over C, and $G = \{1, g \mid g(c_1 + c_i + c_j + c_k) = g(c_1) + g(c_i)i + g(c_j)j + g(c_k)k \text{ for each } b = c_1 + c_i + c_j + c_k \in C[i, j, k] \}$ and $g(u + v\sqrt{-1}) = u - v\sqrt{-1}$ for each $c = u + v\sqrt{-1} \in C$. Then

(1) The center of B is C.

(2) B is an Azumaya C-algebra.

(3) C is a Galois extension of C^G with Galois group $G|_C \cong G$ and a Galois system

$$
\begin{align*}
\{a_1 = \frac{1}{\sqrt{2}}, a_2 = \frac{1}{\sqrt{2}}\sqrt{-1}, b_1 = \frac{1}{\sqrt{2}}, b_2 = -\frac{1}{\sqrt{2}}\sqrt{-1}\}.
\end{align*}
$$

(4) B is the DeMey er-Kanzaki Galois extension of B^G by (2) and (3).

(5) $B^G = R[i, j, k]$.

(6) $B = B^GC$, so B is a central extension of B^G.

(7) $J^C_g = R\sqrt{-1}$.

(8) $B = B J^C_g$ since $1 = -\sqrt{-1}\sqrt{-1} \in B J^C_g$.

(9) $J^B_g = R\sqrt{-1} + R\sqrt{-1}i + R\sqrt{-1}j + R\sqrt{-1}k$.

(10) $B = C J^B_g$.

EXAMPLE 2. By replacing in Example 1 the field of complex numbers C with the ring $C = Z \oplus Z$ where Z is the ring of integers, $g(a, b) = (b, a)$ for all $(a, b) \in C$, and $G = \{1, g \mid g(c_1 + c_i + c_j + c_k) = g(c_1) + g(c_i)i + g(c_j)j + g(c_k)k \text{ for each } b = c_1 + c_i + c_j + c_k \in B = C[i, j, k] \}$. Then

(1) The center of B is C.

(2) C is a Galois extension of C^G with Galois group $G|_C \cong G$ and a Galois system

$$
\begin{align*}
\{a_1 = (1, 0), a_2 = (0, 1); b_1 = (1, 0), b_2 = (0, 1)\}.
\end{align*}
$$

(3) B is not an Azumaya C-algebra (for $\frac{1}{2} \notin C$), and so B is not the DeMey er-Kanzaki Galois extension of B^G.

(4) $C^G = \{(a, a) \mid a \in Z\} = Z$

(5) $B^G = C^G[i, j, k]$.
(6) $B = B^G C$, so B is a central extension of B^G.
(7) $J_g(C) = \{(a, -a) | a \in Z\} = Z(1, -1)$.
(8) $B = B J_g(C)$ since $1 = (1, 1) = (1, -1)(1, -1) \in B J_g(C)$.
(9) $J_g(B) = Z(1, -1) + Z(1, -1)i + Z(1, -1)j + Z(1, -1)k$.
(10) $B = C J_g(B)$.

References

George Szeto and Lianyong Xue
Department of Mathematics, Bradley University
Peoria, Illinois 61625 – U.S.A.
Email: szeto@bradley.bradley.edu and lxue@bradley.bradley.edu

8