On Hopf Galois Hirata Extensions

GEORGE SZETO and LIANYONG XUE
Department of Mathematics, Bradley University
Peoria, Illinois 61625, USA
Email: szeto@hilltop.bradley.edu lxue@hilltop.bradley.edu

ABSTRACT. Let H be a finite dimensional Hopf algebra over a field k, H^* the dual Hopf algebra of H, and B a right H^*-Galois and Hirata separable extension of B^H. Then B is characterized in terms of the commutator subring $V_B(B^H)$ of B^H in B and the smash product $V_B(B^H)\# H$. A sufficient condition is also given for B to be an H^*-Galois Azumaya extension of B^H.

2000 Mathematics Subject Classification: 16W30, 16H10.

1. Introduction. Let H be a finite dimensional Hopf algebra over a field k, H^* the dual Hopf algebra of H, and B a right H^*-Galois extension of B^H. In [3], the class of H^*-Galois Azumaya extensions were investigated, and in [8], it was shown that B is a Hirata separable extension of B^H if and only if the commutator subring $V_B(B^H)$ of B^H in B is a left H-Galois extension of C where C is the center of B ([8], Lemma 2.1 and Theorem 2.6). The purpose of the present paper is to characterize a right H^*-Galois and Hirata separable extension B of B^H in terms of the commutator subring $V_B(B^H)$ and the smash product $V_B(B^H)\# H$. Let B be a right H^*-Galois extension of B^H. Then the following statements are equivalent:

(1) B is a Hirata separable extension of B^H,

(2) $V_B(B^H)$ is an Azumaya C-algebra and $V_B(V_B(B^H)) = B^H$,

(3) $V_B(B^H)$ is a right H^*-Galois extension of C and a direct summand of $V_B(B^H)\# H$ as a $V_B(B^H)$-bimodule, and
(4) $V_B(B^H)$ is a right H^*-Galois extension of C, and $V_B(B^H) \# H$ is a direct summand of a finite direct sum of $V_B(B^H)$ as a bimodule over $V_B(B^H)$.

Moreover, an equivalent condition is given for a right H^*-Galois and Hirata separable extension B of B^H to be an H^*-Galois Azumaya extension which was studied in [3] and [7]. Also, let B be a right H^*-Galois and Hirata separable extension of B^H and A a subalgebra of B^H over C such that B^H is a projective Hirata separable extension of A containing A as a direct summand as an A-bimodule. Then $V_B(A)$ is a separable subalgebra of B^H over C, and there exists an H-submodule algebra D in B which is separable over C such that $D^H = V_B(A)$ and $D \cong V_B(A) \otimes Z$ as Azumaya Z-algebras where Z is the center of D and F is an Azumaya Z-algebra in D.

2. Basic definitions and notations. Throughout, H denotes a finite dimensional Hopf algebra over a field k with comultiplication Δ and counit ε, H^* the dual Hopf algebra of H, B a left H-module algebra, C the center of B, $B^H = \{ b \in B \mid hb = \varepsilon(h)b \text{ for all } h \in H \}$ which is called the H-invariant of B, and $B\#H$ the smash product of B with H where $B\#H = B \otimes_k H$ such that for all $b \# h$ and $b' \# h'$ in $B \# H$, $(b \# h)(b' \# h') = \sum b(h_1 b') \# h_2 h'$ where $\Delta(h) = \sum h_1 \otimes h_2$. B is called a right H^*-Galois extension of B^H if B is a right H^*-comodule algebra with structure map $\rho : B \rightarrow B \otimes_k H^*$ such that $\beta : B \otimes_{B^H} B \rightarrow B \otimes_k H^*$ is a bijection where $\beta(a \otimes b) = (a \otimes 1)\rho(b)$.

For a subring A of B with the same identity 1, we denote the commutator subring of A in B by $V_B(A)$. we call B a separable extension of A if there exist $\{a_i, b_i\}$ in B, $i = 1, 2, ..., m$ for some integer m such that $\sum a_i b_i = 1$, and $\sum a_i \otimes b_i = \sum a_i \otimes b_i b$ for all b in B where \otimes is over A. An Azumaya algebra is a separable extension of its center. A ring B is called a Hirata separable extension of A if $B \otimes_A B$ is isomorphic to a direct summand of a finite direct sum of B as a B-bimodule. A right H^*-Galois extension B is called an H^*-Galois Azumaya extension if B is separable over B^H which is an Azumaya algebra over C^H. A right H^*-Galois extension B of B^H is called an H^*-Galois Hirata extension if B is also a Hirata separable extension of B^H. Throughout, an H^*-Galois
extension means a right H^*-Galois extension unless it is stated otherwise.

3. The H^*-Galois Hirata extensions. In this section, we shall characterize an H^*-Galois Hirata extension B of B^H in terms of the commutator subring $V_B(B^H)$ of B^H in B and the smash product $V_B(B^H)\# H$. A relationship between an H^*-Galois Hirata extension and an H^*-Galois Azumaya extension is also given. We begin with some properties of an H^*-Galois Hirata extension B of B^H.

Lemma 3.1. If A_1 and A_2 are H^*-Galois extensions such that $A^H_1 = A^H_2$ and $A_1 \subseteq A_2$, then $A_1 = A_2$.

Proof. By Theorem 5.1 in [3], there exist $\{x_i, y_i \in A_1 | i = 1, 2, ..., n\}$ for some integer n such that, for all $h \in H$, $\sum x_i(hy_i) = T(h)1_{A_1}$, where $T \in \mathbb{F}_H$, the set of right integrals in H^*. Let $t \in \mathbb{F}_H$, the set of left integrals in H, such that $T(t) = 1$, then $\{x_i, f_i = t(y_i) | i = 1, 2, ..., n\}$ is a dual basis of the finitely generated and projective right module over A^H_1. Since $A_1 \subseteq A_2$ such that $A^H_1 = A^H_2$, $\{x_i, f_i | i = 1, 2, ..., n\}$ is also a dual basis of the finitely generated and projective right module A_2 over A^H_1. This implies that $A_1 = A_2$.

Lemma 3.2. If B is an H^*-Galois Hirata extension of B^H, then B^H is a direct summand of B as a B^H-bimodule.

Proof. We use the argument as given in [2]. Since B is an H^*-Galois and a Hirata separable extension of B^H, $V_B(B^H)$ is a left H-Galois extension of C ([8], Lemma 2.1 and Theorem 2.6). Hence $V_B(B^H)$ is a finitely generated and projective module over C ([3], Theorem 2.2). Let $\Omega = \text{Hom}_C(V_B(B^H), V_B(B^H))$. Since C is commutative, $V_B(B^H)$ is a progenerator of C. Thus B is a left Ω-module such that $B \cong V_B(B^H) \otimes C \text{Hom}_C(V_B(B^H), B) \cong V_B(B^H) \otimes C V_B(V_B(B^H))$ as C-algebras where $f(1) \in B^H$ for each $f \in \text{Hom}_C(V_B(B^H), B)$ by the proof of Lemma 2.8 in [2]. But $V_B(V_B(B^H)) = B^H$ ([2], Lemma 2.5), so $B \cong V_B(B^H) \otimes C B^H$. This implies that $V_B(B^H)$ is an H^*-Galois extension of C ([2], Lemma 2.8); and so C is a direct summand of $V_B(B^H)$ as a C-bimodule.
(2], Corollary 1.9 and Corollary 1.10). Therefore \(B^H\) is a direct summand of \(B\) as a \(B^H\)-bimodule.

By the proof of Lemma 3.2, \(V_B(B^H)\) is an \(H^*\)-Galois extension of \(C\).

COROLLARY 3.3. If \(B\) is an \(H^*\)-Galois Hirata extension of \(B^H\), then \(V_B(B^H)\) is an \(H^*\)-Galois extension of \(C\).

COROLLARY 3.4. If \(B\) is an \(H^*\)-Galois Hirata extension of \(B^H\), then \(B = B^H \cdot V_B(B^H)\) and the centers of \(B\), \(B^H\), and \(V_B(B^H)\) are the same \(C\).

PROOF. By Corollary 3.3, \(V_B(B^H)\) is an \(H^*\)-Galois extension of \(C\), so \(B^H \cdot V_B(B^H)\) is also an \(H^*\)-Galois extension of \(B^H\) (= \((B^H \cdot V_B(B^H))^H\)) with the same Galois system as \(V_B(B^H)\) ([3], Theorem 5.1). Noting that \(B^H \cdot V_B(B^H) \subset B\), we conclude that \(B = B^H \cdot V_B(B^H)\) by Lemma 3.1. Moreover, \(V_B(V_B(B^H)) = B^H\) ([8], Lemma 2.5), so the centers of \(B^H\), \(V_B(B^H)\), and \(B\) are the same \(C\).

THEOREM 3.5. Let \(B\) be an \(H^*\)-Galois extension of \(B^H\). The following statements are equivalent:

(1) \(B\) is a Hirata separable extension of \(B^H\),

(2) \(V_B(B^H)\) is an \(H^*\)-Galois extension of \(C\) and a direct summand of \(V_B(B^H) \# H\) as a \(V_B(B^H)\)-bimodule,

(3) \(V_B(B^H)\) is an Azumaya \(C\)-algebra and \(V_B(V_B(B^H)) = B^H\), and

(4) \(V_B(B^H)\) is an \(H^*\)-Galois extension of \(C\) and \(V_B(B^H) \# H\) is a direct sum of a finite direct sum of \(V_B(B^H)\) as a bimodule over \(V_B(B^H)\).

PROOF. (1) \(\iff\) (3) Since \(B\) is an \(H^*\)-Galois and a Hirata separable extension of \(B^H\), by Lemma 3.2, \(B^H\) is a direct summand of \(B\) as a \(B^H\)-bimodule. Thus \(V_B(V_B(B^H)) = B^H\) and \(V_B(B^H)\) is a separable \(C\)-algebra ([4], Proposition 1.3 and Proposition 1.4). But the center of \(V_B(B^H)\) is \(C\) by Corollary 3.4, so \(V_B(B^H)\) is an Azumaya \(C\)-algebra.

(3) \(\iff\) (1) Since \(V_B(B^H)\) is an Azumaya \(C\)-algebra and \(B\) is a bimodule over \(V_B(B^H)\), \(B \cong V_B(B^H) \otimes C V_B(V_B(B^H)) = V_B(B^H) \otimes C B^H\) as a bimodule over \(V_B(B^H)\) ([1], Corollary
3.6 on page 56). Noting that $B \equiv V_B(B^H) \otimes_C B^H$ is also an isomorphism as C-algebras and that $V_B(B^H)$ is an Azumaya C-algebra, we conclude that $V_B(B^H) \otimes_C B^H$ is a Hirata separable extension of B^H; and so B is a Hirata separable extension of B^H.

(3) \implies (2) By the proof of (3) \implies (1) $B \equiv V_B(B^H) \otimes_C B^H$ such that $V_B(B^H)$ is a finitely generated and projective module over C, so $V_B(B^H)$ is an H^*-Galois extension of C ([2], Lemma 2.8). Moreover, since $V_B(B^H)$ is an Azumaya C-algebra, $V_B(B^H)$ is a direct summand of $V_B(B^H) \otimes_C (V_B(B^H))^\circ$ as a $V_B(B^H)$-bimodule where $(V_B(B^H))^\circ$ is the opposite algebra of $V_B(B^H)$. But $V_B(B^H) \otimes_C (V_B(B^H))^\circ \equiv \text{Hom}_C(V_B(B^H), V_B(B^H)) \equiv V_B(B^H) \# H$ ([3], Theorem 2.2), so $V_B(B^H)$ is a direct summand of $V_B(B^H) \# H$ as a $V_B(B^H)$-bimodule.

(2) \implies (3) Since $V_B(B^H)$ is an H^*-Galois extension of C, $B^H \cdot V_B(B^H)$ is an H^*-Galois extension of $(B^H \cdot V_B(B^H))^H$. But $(B^H \cdot V_B(B^H))^H = B^H$, so $B^H \cdot V_B(B^H)$ and B are H^*-Galois extensions of B^H such that $B^H \cdot V_B(B^H) \subset B$. Hence $B^H \cdot V_B(B^H) = B$ by Lemma 3.1. Thus the centers of B and $V_B(B^H)$ are the same C. Moreover, $V_B(B^H)$ is a direct summand of $V_B(B^H) \# H$ as a $V_B(B^H)$-bimodule by hypothesis, so it is separable C-algebra ([3], Theorem 2.3). Thus $V_B(B^H)$ is an Azumaya C-algebra. But then $B \equiv V_B(B^H) \otimes_C V_B(B^H)$. On the other hand, by hypothesis, $V_B(B^H)$ is an H^*-Galois extension of C, so $B \equiv V_B(B^H) \otimes_C B^H$ ([2], Lemma 2.8). Therefore $V_B(V_B(B^H)) = B^H$.

(3) \iff (4) Since $V_B(B^H)$ is an H^*-Galois extension of C, it is a finitely generated and projective module over C and Hom$_C(V_B(B^H), V_B(B^H)) \equiv V_B(B^H) \# H$ ([3], Theorem 2.2). But then $V_B(B^H)$ is a Hirata separable extensions of C if and only if $V_B(B^H) \# H$ is a direct summand of a finite direct sum of $V_B(B^H)$ as a bimodule over $V_B(B^H)$ ([6], Corollary 3). Thus $V_B(B^H)$ is an Azumaya C-algebra if and only if $V_B(B^H)$ is an H^*-Galois extension of C and $V_B(B^H) \# H$ is a direct summand of a finite direct sum of $V_B(B^H)$ as a bimodule over $V_B(B^H)$.

By Theorem 3.5, we can obtain a relationship between the class of H^*-Galois Hirata extensions and the class of H^*-Galois Azumaya extensions which were studied in [3] and
COROLLARY 3.6. Let B be an H^*-Galois Azumaya extension of B^H. Then B is an H^*-Galois Hirata extension of B^H if and only if $C = C^H$.

Proof. (\Rightarrow) Since B is an H^*-Galois Hirata extension of B^H, $V_B(B^H)$ is an Azumaya algebra over C and a left H-Galois extension of C ([8], Theorem 2.6). Hence $V_B(V_B(B^H)) = B^H$ ([8], Lemma 2.5). Thus $C \subset B^H$; and so $C = C^H$.

(\Leftarrow) Since B is an H^*-Galois Azumaya extension of B^H, $V_B(B^H)$ is separable over C^H ([3], Lemma 4.1). Since B is an H^*-Galois Azumaya extension of B^H again, $V_B(B^H)$ is an H^*-Galois extension of $(V_B(B^H))^H$ ([3], Lemma 4.1), so both $B^H \cdot V_B(B^H)$ and B are H^*-Galois extensions of B^H such that $B^H \cdot V_B(B^H) \subset B$. Hence $B^H \cdot V_B(B^H) = B$ by Lemma 3.1. This implies that the center of $V_B(B^H)$ is C. But by hypothesis, $C = C^H$, so $V_B(B^H)$ is a separable extension of C. But $B = B^H \cdot V_B(B^H) \cong B^H \otimes_C V_B(B^H)$ as Azumaya C-algebras, so B is a Hirata separable extension of B^H. Thus B is an H^*-Galois Hirata extension of B^H.

COROLLARY 3.7. Let B be an H^*-Galois Hirata extension of B^H. Then B is an H^*-Galois Azumaya extension of B^H if and only if B is an Azumaya C^H-algebra.

Proof. (\Rightarrow) Since B is an H^*-Galois Azumaya extension of B^H, B^H is Azumaya C^H-algebra and B is separable over B^H ([3], Theorem 3.4). Hence B is separable over C^H by the transitivity of separable extensions. But B is an H^*-Galois Azumaya extension of B^H and an H^*-Galois Hirata extension of B^H by hypothesis, so $C = C^H$ by Corollary 3.6. This implies that B is an Azumaya C^H-algebra.

(\Leftarrow) By hypothesis, B is an Azumaya C^H-algebra. Hence $C = C^H$. But B is an H^*-Galois Hirata extension of B^H, so $V_B(B^H)$ is an Azumaya subalgebra of B over C by Theorem 3.5-(3). Since B is an H^*-Galois Hirata extension of B^H again, B is a Hirata separable extension of B^H and a finitely generated and projective module over B^H. Thus $V_B(V_B(B^H)) = B^H$ ([5], Theorem 1); and so $B^H (= V_B(V_B(B^H)))$ is an Azumaya
subalgebra of B over CH by the commutator theorem for Azumaya algebras ([1], Theorem 4.3 on page 57). This proves that B is an H^*-Galois Azumaya extension of BH.

4. Invariant subalgebras. For an H^*-Galois Hirata extension B, let A be a subalgebra of BH over C such that BH is a projective Hirata separable extension of A and contains A as a direct summand as an A-bimodule. In this section, we shall show that $V_{BH}(A)$ is the H-invariant subalgebra of a separable subalgebra D in B over C, that is, $D^H = V_{BH}(A)$. We denote by S the set $\{A|A$ is a subalgebra of BH over C such that BH is a projective Hirata separable extension of A and contains A as a direct summand as an A-bimodule}.

Lemma 4.1. Let B be an H^*-Galois Hirata extension of BH. For any $A \in S$, $V_B(A)$ is an H-submodule algebra of B and separable over C, and $(V_B(A))^H = V_{BH}(A)$ which is a separable C-algebra.

Proof. Since $A \in S$, BH is a projective Hirata separable extension of A and contains A as a direct summand as an A-bimodule. But B is an H^*-Galois Hirata extension of BH, so B is a projective Hirata separable extension of BH. Hence, by the transitivity property of projective Hirata separable extensions, B is a projective Hirata separable extension of A. Also BH is a direct summand of B as a BH-bimodule by Lemma 3.2, so A is a direct summand of B as an A-bimodule. Thus $V_B(A)$ is a separable algebra over C ([5], Theorem 1). Moreover, it is clear that $(V_B(A))^H = V_{BH}(A) = V_{BH}(A)$, so $V_{BH}(A)$ is a separable C-algebra (Corollary 3.4 and [5], Theorem 1).

Next we want to show which separable subalgebra of BH over C is an H-invariant subring of an H-submodule algebra in B. Let $T = \{E \subset B|E$ is a separable C-subalgebra of BH and satisfies the double centralizer property in BH such that $V_{BH}(E) \in S\}$. Next we show that for any $E \in T$, E is the H-invariant subring of an H-submodule algebra D in B which is separable over C.
THEOREM 4.2. Let E be in \mathcal{T}. Then there exists an H-submodule algebra D in B which is separable over C such that $D^H = E$.

PROOF. Since E is in \mathcal{T}, $V_B^\pi(E)$ is in S such that $V_B^\pi(V_B^\pi(E)) = E$. Now by Lemma 4.1, $V_B(V_B^\pi(E))$ is an H-submodule algebra of B and separable over C such that $(V_B(V_B^\pi(E)))^H = V_B^\pi(V_B^\pi(E))$. But $V_B^\pi(V_B^\pi(E)) = E$, so $(V_B(V_B^\pi(E)))^H = E$. Let $D = V_B(V_B^\pi(E))$. Then D satisfies the theorem.

By Theorem 4.2, we obtain an expression for the separable H-submodule algebra D for a given E in \mathcal{T}.

COROLLARY 4.3. By keeping the notations as given in Theorem 4.2, let Z be the center of E. Then $D \cong E \otimes_Z V_D(E)$ as Azumaya Z-algebras.

PROOF. Since E satisfies the double centralizer property in B^H, $V_B^\pi(V_B^\pi(E)) = E$. Hence the centers of E and $V_B^\pi(E)$ are the same Z. Similarly as given in the proof of Lemma 4.1, since $V_B^\pi(E)$ is in S, $B (= B^H : V_B(B^H))$ is a projective Hirata separable extension of $V_B^\pi(E)$ and contains $V_B^\pi(E)$ as a direct summand as a $V_B^\pi(E)$-bimodule by the transitivity property of projective Hirata separable extensions and the direct summand conditions. Thus $V_B^\pi(E)$ satisfies the double centralizer property in B, that is, $V_B(V_B^\pi(E)) = V_B^\pi(E)$. This implies that the centers of $V_B^\pi(E)$ and $V_B(V_B^\pi(E))$ are the same. Therefore D and E have the same center Z. Noting that D and E are separable C algebras by Theorem 4.2, we conclude that $E (= D^H)$ is an Azumaya subalgebra of D over Z, and so $D \cong E \otimes_Z V_D(E)$ as Azumaya Z-algebras ([1], Theorem 4.3 on page 57).

Remark. When B is an H^*-Galois Azumaya extension of B^H, the correspondence $A \rightarrow V_B(A)$ as given in Lemma 4.1 recovers the one-to-one correspondence between the set of separable subalgebras of B^H and the set of H^*-Galois extensions in B containing $V_B(B^H)$ as given in [3].
ACKNOWLEDGEMENTS. This paper was written under the support of a Caterpillar Fellowship at Bradley University. The authors would like to thank Caterpillar Inc. for the support.

REFERENCES

