ON AZUMAYA INVARIANT SUBRINGS OF A GALOIS EXTENSION

Lianyong Xue
Department of Mathematics
Bradley University
Peoria, Illinois 61625, USA
lxue@bradley.edu

Abstract

Let B be a ring with 1, C the center of B, G a finite automorphism group of B, and B^G the set of elements in B fixed under each element in G. Then it is shown that if B is a commutator Galois extension with Galois group G, then B is an Azumaya C-algebra if and only if B^G is an Azumaya C^G-algebra. This generalizes F. DeMeyer’s result for center Galois extensions. A Galois H-separable extension of an Azumaya algebra is also characterized.

1. Introduction

Let B be a Galois extension of B^G with Galois group G and C the center of B. In ([1], [2]), the class of Galois extensions B with Galois group G such that B^G is an Azumaya C^G-algebra (that is, B is an Azumaya Galois extension with Galois group G) was studied. It can be shown that for a Galois extension B with Galois group G, B^G is an Azumaya C^G-algebra implies that B is an Azumaya C-algebra. In [4], DeMeyer showed that, if C is a Galois extension with Galois group $G|_C \cong G$ (that is, B is a center Galois extension

AMS 2000 Subject Classification Codes: 16S35, 16W20
Key Words and Phrases: Galois extensions, Center Galois extensions, Commutator Galois extensions, Azumaya algebras, H-separable extensions.
with Galois group G), then B is an Azumaya C-algebra if and only if B^G is an Azumaya C^G-algebra ([4], Lemma 2). Noting that an Azumaya Galois extension is not necessarily a center Galois extension, in the present paper, we are interested in a more general problem: Is it true that B is an Azumaya C-algebra if and only if B^G is an Azumaya C^G-algebra for a Galois extension B with Galois group G? We first prove this affirmatively when $V_B(B^G)$, the commutator subring of B^G in B, is a Galois extension with Galois group $G|V_B(B^G) \equiv G$ (that is, B is a commutator Galois extension with Galois group G). Since $C \subseteq V_B(B^G)$, our result generalizes the above DeMeyr result for center Galois extensions.

Then, we construct an example of a Galois H-separable extension B ([6]) such that B is an Azumaya C-algebra, but B^G is not an Azumaya C^G-algebra. Moreover, several equivalent conditions are given for a Galois H-separable extension B under which B is an Azumaya C-algebra implies that so is B^G over C^G.

2 Basic Definitions and Notations

Throughout this paper, B will represent a ring with 1, C the center of B, G a finite automorphism group of B, B^G the set of elements in B fixed under each element in G, $B*G$ the skew group ring of G over B, that is, $B*G$ is the free left B-module in which the multiplication is given by $gb = g(b)g$ for $b \in B$ and $g \in G$, and \overline{G} the inner automorphism group of $B*G$ induced by G, that is, $\overline{g}(x) = g x g^{-1}$ for each $x \in B*G$ and $g \in G$. We note that \overline{G} restricted to B is G.

Let A be a subring of a ring B with the same identity 1. We denote $V_B(A)$ the commutator subring of A in B. We call B a separable extension of A if there exist $\{a_i, b_i \in B, i = 1, 2, \ldots, k \}$ for some integer k such that $\sum a_i b_i = 1$, and $\sum b a_i \otimes b_i = \sum a_i \otimes b b$ for all $b \in B$ where \otimes is over A. An Azumaya algebra is a separable extension of its center. A ring B is called a H-separable extension of A if $B \otimes_A B$ is isomorphic to a direct summand of a finite direct sum of B as a B-bimodule. We call B a Galois extension of B^G with Galois group G if there exist elements $\{a_i, b_i \in B, i = 1, 2, \ldots, m \}$ for some integer m
such that $\sum_{i=1}^{m} a_i g(b_i) = \delta_{1, g}$ for each $g \in G$ ([4]). Such a set \(\{a_i, b_i\} \) is called a G-Galois system for B. A Galois extension B of B^G is called a Galois algebra over B^G if B^G is contained in C ([4],[9]). We called B a center Galois extension with Galois group G if C is a Galois algebra over C^G with Galois group $G|_{C^G} \cong G$ ([7],[8]), and a commutator Galois extension of B^G with Galois group G if $V_B(B^G)$ is a Galois extension of $(V_B(B^G))^G$ with Galois group $G|_{V_B(B^G)} \cong G$ ([10]). A Galois extension B of B^G with Galois group G is called an Azumaya Galois extension if B^G is an Azumaya C^G-algebra ([1],[2]). As studied in [6], B is called a Galois H-separable extension of B^G if it is a Galois and an H-separable extension of B^G.

3. Main Results

Theorem 3.1. Let B be a commutator Galois extension of B^G with Galois group G. Then B is an Azumaya C-algebra if and only if B^G is an Azumaya C^G-algebra.

Proof. (\Rightarrow) Since B is a commutator Galois extension of B^G with Galois group G, $V_B(B^G)$ is a Galois extension of $(V_B(B^G))^G$ with Galois group $G|_{V_B(B^G)} \cong G$. Noting that $V_B(B^G) \subseteq B^G \cdot V_B(B^G) \subseteq B$, we have that both $B^G \cdot V_B(B^G)$ and B are Galois extensions of B^G with Galois group $G|_{B^G \cdot V_B(B^G)} \cong G$. Thus $B = B^G \cdot V_B(B^G)$. Clearly, $C \subseteq V_B(B^G)$, so $B = B^G \cdot V_B(B^G) = B^G C \cdot V_B(B^G)$ such that $B^G C$ and $V_B(B^G)$ are C-subalgebras of the Azumaya C-algebra B. Hence, they are Azumaya C-algebras by the commutator theorem for Azumaya algebras ([3], Theorem 4.3, page 57). But then the center of B^G is C^G (for the center of $B^G C$ is C). Thus, $(V_B(B^G))^G = (V_B(B^G))^G = C^G$. Therefore, $V_B(B^G)$ is a Galois algebra over C^G. This implies that there exists an element $c \in C$ such that $Tr_G(c) = 1$ ([5], proof of Proposition 5, page 314). Next we claim that the skew group ring $B \ast G$ is a separable extension over B. In fact, let $a_i = g_i$ and $b_i = c g_i^{-1}$ in $B \ast G$ for $i = 1, 2, \ldots, n$ where $G = \{g_1, g_2, \ldots, g_n\}$ for some integer n and $c \in C$ such that $Tr_G(c) = 1$. Then $\sum a_i b_i = \sum g_i (c g_i^{-1}) = \sum g_i (c) = Tr_G(c) = 1$, and for all b in B and $g \in G$,
Therefore, \(\{ a_i = g_i; b_i = cg_i^{-1} \} \) is a separable system of \(B \ast G \) over \(B \). Thus the skew group ring \(B \ast G \) is a separable extension over \(B \). By hypothesis, \(B \) is an Azumaya \(C \)-algebra, so \(B \ast G \) is a separable \(C \)-algebra by the transitivity of separable extensions.

Since \(V_B(B^G) \) is a Galois algebra over \(C^G \) again, \(V_B(B^G) \) is finitely generated, projective, and separable over \(C^G \). But \(V_B(B^G) \) is an Azumaya \(C \)-algebra, so \(C \) is a separable \(C^G \)-algebra ([3], Theorem 3.8, page 55). Thus \(B \ast G \) is a separable \(C^G \)-algebra by the transitivity of separable extensions again. But \(B^G \equiv \text{Hom}_{B^G}(B, B) \equiv V_{\text{Hom}_{C^G}(B, B)}(B \ast G) \) where \(B \) is a progenerator \(C^G \)-module, so \(\text{Hom}_{C^G}(B, B) \) is an Azumaya \(C^G \)-algebra ([3], Proposition 4.1, page 56) containing a separable subalgebra \(B \ast G \). Thus, the commutator subalgebra \(B^G \) is also a separable \(C^G \)-algebra ([3], Theorem 4.3, page 57). Therefore \(B^G \) is an Azumaya \(C^G \)-algebra.

(\(\Leftarrow \Rightarrow \)) Since \(B \) is a Galois extension of \(B^G \), \(B \) is a separable extension of \(B^G \). By hypothesis, \(B^G \) is an Azumaya \(C^G \)-algebra, so \(B \) is a separable \(C^G \)-algebra by transitivity of separable extensions. Thus, \(B \) is an Azumaya \(C \)-algebra ([3], Theorem 3.8, page 55).

If \(B \) is a center Galois extension of \(B^G \), then \(C \) is a Galois algebra over \(C^G \) with Galois group \(G|_C \equiv G \) by the definition of a center Galois extension. But \(C \subset V_B(B^G) \), so \(V_B(B^G) \) is a Galois extension of \(V_B(B^G)^G \) with Galois group \(G|_{V_B(B^G)^G} \equiv G \) with the same Galois system as \(C \). Hence the DeMeyer's result ([4], Lemma 2) is an immediate consequence of Theorem 3.1.
Corollary 3.2. ([4], Lemma 2) Let B be a center Galois extension of B^G with Galois group G. Then B is an Azumaya C-algebra if and only if B^G is an Azumaya C^G-algebra.

For a general Galois extension B of B^G with Galois group G, the necessity of Theorem 3.1 is not true. A counter example can be constructed by using the following theorem.

Theorem 3.3. Let A be an Azumaya Galois extension of A^G with Galois group G of order n invertible in A and E the center of A. Then

1. $A * G$ is a Galois H-separable extension of $(A * G)^G$ with inner Galois group G, and

Proof. (1) Since A is a Galois extension of A^G with Galois group G, $A * G$ is a Galois extension of $(A * G)^G$ with an inner Galois group G with the same Galois system for A. Thus $A * G$ is an H-separable extension of $(A * G)^G$ because G is inner ([6], Corollary 3).

(2) Since A is an Azumaya Galois extension of A^G with Galois group G by hypothesis, $A * G$ is an Azumaya E^G-algebra ([2], Theorem 1). Since n is invertible in A, $E^G G$ is a separable E^G-subalgebra of the Azumaya E^G-algebra $A * G$. Hence $(A * G)^G = V_{A * G}(E^G G)$ is also a separable E^G-subalgebra of $A * G$ by the commutator theorem for Azumaya algebras ([3], Theorem 4.3, page 57). Moreover, since $(A * G)^G$ and $E^G G$ are commutator separable subalgebras of the Azumaya E^G-algebra $A * G$, they have the same center. But the center of the group algebra $E^G G$ is not E^G, so $(A * G)^G$ is not an Azumaya E^G-algebra.

Theorem 3.3-(2) shows that for a Galois H-separable extension $B (= A * G)$ of B^G, B is an Azumaya C-algebra does not necessarily implies that B^G is an Azumaya C^G-algebra. Next, we give some equivalent conditions for B^G being an Azumaya C^G-algebra.

Theorem 3.4. Let B be a Galois H-separable extension of B^G with Galois group G of order n invertible in B. If B is an Azumaya C-algebra, then the following are equivalent:
(1) B^G is an Azumaya C^G-algebra.

(2) The center of B^G is C^G.

(3) The center of $V_B(B^G)$ is C.

(4) $B = B^G \cdot V_B(B^G)$.

Proof. (1) \implies (2) It is clear.

(2) \implies (3) Since B is a Galois H-separable extension of B^G with Galois group G, $V_B(V_B(B^G)) = B^G$ ([6], Proposition 4-(1)). This implies that B^G and $V_B(B^G)$ have the same center. Thus, the center of $V_B(B^G)$ is C^G. But, clearly, C is contained in the center of $V_B(B^G)$, so $C = C^G$.

(3) \implies (1) Since B^G and $V_B(B^G)$ have the same center, C is also the center of B^G. Hence $C = C^G$. Since B is a Galois H-separable extension and $n^{-1} \in B$, $V_B(B^G)$ is a separable C-algebra ([6], Proposition 4-(3), (i)\iff(iii)); and so $V_B(B^G)$ is an Azumaya C-algebra. But B is an Azumaya C-algebra, so $B^G (= V_B(V_B(B^G)))$ is also an Azumaya C-algebra ([3], Theorem 4.3, page 57).

(3) \implies (4) Since B is a Galois H-separable extension of B^G with Galois group G, $V_B(B^G) = \oplus_{g \in G} J_g$ where $J_g = \{ b \in B \mid xb = bg(x) \text{ for all } x \in B \}$ for each $g \in G$ (in particular, $J_1 = C$) ([5], Proposition 1). But, by hypothesis, C is the center of $V_B(B^G)$, so J_g is not contained in the center of $V_B(B^G)$ for each $g \neq 1$ in G. Therefore, $g|_{V_B(B^G)}$ is not an identity for each $g \neq 1$ in G ([6], Proposition 5), that is, $L = \{ g \in G \mid g|_{V_B(B^G)} \text{ is an identity} \} = \{ 1 \}$. Thus, $\oplus_{g \in L} J_g = J_1 = C$, the center of $V_B(B^G)$, so $B = B^G \cdot V_B(B^G)$ ([6], Proposition 6-(3), (i)\iff(ii)).

(4) \implies (3) Since B^G and $V_B(B^G)$ have the same center, the center of $V_B(B^G)$ is also the same as the center of $B^G \cdot V_B(B^G)$. By hypothesis, $B = B^G \cdot V_B(B^G)$, so the center of $V_B(B^G)$ is C.

6
The following theorem gives an equivalent condition under which a commutator Galois extension is a center Galois extension.

Theorem 3.5. Let B be a commutator Galois extension with Galois group G. Then B is a center Galois extension of B^G if and only if $V_B(B^G)$ is commutative.

Proof. (\Rightarrow) Since B is a center Galois extension of B^G, C is a Galois algebra over C^G with Galois group $G|C \cong G$. Hence B and $B^G C$ are Galois extension of B^G with the same Galois system for C. Thus, $B = B^G C$, and so $V_B(B^G) = V_B(B^G C) = V_B(B) = C$, a commutative ring.

(\Leftarrow) Since $V_B(B^G)$ is a Galois extension of $(V_B(B^G))^G$ with Galois group $G|V_B(B^G) \cong G$, B and $B^G \cdot V_B(B^G)$ are Galois extensions of B^G with the same Galois system for $V_B(B^G)$. Thus, $B = B^G \cdot V_B(B^G)$. By hypothesis, $V_B(B^G)$ is a commutative ring, so $V_B(B^G) = V_B(B^G \cdot V_B(B^G)) = V_B(B) = C$. Therefore, B is a center Galois extension of B^G.

We conclude this paper with two examples to demonstrate our results in Theorem 3.1 and Theorem 3.3, and to illustrate that a commutator Galois extension is not necessarily a center Galois extension.

Example 1. Let $A = Q[i, j, k]$ be the quaternion algebra over the rational field Q, $B = M_2(Q) \otimes_Q A$ where $M_2(Q)$ is the matrix ring of order 2 over the rational field Q, and $G = \{1 \otimes_Q 1, 1 \otimes_Q g_i, 1 \otimes_Q g_j, 1 \otimes_Q g_k\}$ where $g_i(x) = ixi^{-1}$, $g_j(x) = jxj^{-1}$, and $g_k(x) = kxk^{-1}$ for all x in $Q[i, j, k]$. Then

1. $B^G = M_2(Q) \otimes_Q Q \cong M_2(Q)$.
2. The center C of B is $Q \otimes_Q Q \cong Q$.
3. B is a Galois extension of B^G with Galois group G with a Galois system.
\{1 \otimes 1, 1 \otimes i, 1 \otimes j, 1 \otimes k; \frac{1}{4} \otimes 1, -\frac{1}{4} \otimes i, -\frac{1}{4} \otimes j, -\frac{1}{4} \otimes k\}.

(4) \(V_B(B^G) = Q \otimes Q \cong A \), and so \(V_B(B^G) \) is a Galois extension with Galois group \(G_{V_B(B^G)} \cong G \) with the same Galois system given in (3) and \(V_B(B^G) \neq C \).

(5) \(B \) is an Azumaya \(C \)-algebra.

(6) \(B^G \) is an Azumaya \(C^G \)-algebra.

(7) \(V_B(B^G) \) is not commutative.

(8) \(B \) is not a center Galois extension of \(B^G \) with Galois group \(G \) by Theorem 3.5.

Example 2. Let \(A = M_2(C) \) be the matrix ring of order 2 over the field of complex numbers \(C \) and \(G = \{1, g\} \) with \(g((c_{ij})) = (\overline{c_{ij}}) \) where \(\overline{c_{ij}} \) is the conjugate of \(c_{ij} \) in \(C \).

Then,

(1) \(A \) is a Galois extension of \(A^G \) with Galois group \(G \) with a Galois system \(\{a_1 = I, a_2 = iI; b_1 = \frac{1}{2}I, b_2 = -\frac{1}{2}I\} \), that is, \(a_1b_1 + a_2b_2 = I \) and \(a_1g(b_1) + a_2g(b_2) = 0 \), where \(I \) is the identity of \(M_2(C) \), \(0 \) is the zero matrix in \(M_2(C) \), and \(i \) is the complex unit.

(2) \(A^G = M_2(R) \), the matrix ring of order 2 over the field of real numbers \(R \).

(3) The center of \(A \) is \(C \).

(4) \(C^G = R \).

(5) \(A^G \) is an Azumaya \(R \)-algebra.

(6) By (1) and (5), \(A \) is an Azumaya Galois extension of \(A^G \).

(7) By Theorem 3.3, \(A \ast G \) is a Galois \(H \)-separable extension of \((A \ast G)^G \) with inner Galois group \(\overline{G} \).

(8) \(A \ast G \) is an Azumaya \(R \)-algebra.

(9) \((A \ast G)^G \) (\(= M_2(R) \oplus M_2(R)g \)) has center \(R \oplus Rg \), so \((A \ast G)^G \) is not an Azumaya \(R \)-algebra.
Acknowledgement. The author would like to thank Professor George Szeto for many useful suggestions and discussions. This paper was written under the support of a Caterpillar Fellowship at Bradley University. The author would like to thank Caterpillar Inc. for the support.

REFERENCES

