1. Introduction. Proper knot theory deals with proper embeddings of the real line into open 3-manifolds. Two such embeddings f and g are said to be equivalent if there is a proper isotopy connecting the two embeddings. This is, in general, a non-ambient classification theory. For example, there is one equivalence class of smooth (or p. l.) proper knots in \mathbb{R}^3 (e. g., see page 183, exercise 9 of [5] or reference [2]).

Churchard and Spring have obtained classification theorems for smooth proper knots in open solid handlebodies and Klein bottles (of countable genus) and for $F^2 \times R$ (where F is a smooth, closed surface) ([2] and [3]). It was shown that, up to equivalence and orientation, there is a unique smooth proper knot in open solid handlebodies and Klein bottles. It was also shown that smooth proper knot equivalence classes in $S^2 \times R$ are completely determined by the ends to which the proper knot in those equivalence classes run. In [7], the author showed that two p. l. proper knots that are equivalent under a p. l. proper isotopy are connected by a locally flat p. l. proper isotopy. Hence, the smooth and p. l. classification of proper knots are very similar.

In [6], the author modified Churchard and Spring's techniques to show that topological proper knots in \mathbb{R}^3 which are tame at a point are all equivalent. In fact, those theorems apply to proper knots which pierce a disk at one of its points. However, it is still unknown whether there are any inequivalent topological proper knots in \mathbb{R}^3 .

The main results of this paper are the following:

1) Theorem 3.1, which states that if *f* is a proper knot running between the opposite ends of $D^2 \times R$, then, up to orientation, *f* is equivalent to the proper knot which runs along $0 \times R$. The idea, which was suggested to the author my Bob Daverman and Ric Ancel, is to use an equivalence by a "plunger" technique, as suggested by Figures 1, 2 and 3.

2) Theorem 3.4, which states that if the image of f pierces a disk at all of its points and is locally homogenous then f is equivalent to a p. l. proper knot and

3) Theorem 3.11, which states that if f is a proper knot whose set of wild points has no limit point and runs between a sphere end and a collared end and pierces a disk at each of its points then f is equivalent to a p. l. (or smooth) proper knot.

It is an easy consequence of Theorem 3.1 that a proper knot which can be "engulfed" to run between the opposite ends of an embedded $D^2 \times R$ is equivalent to a p. l. proper knot. Hence any "non-trivial" proper knot in R^3 would have to fail to pierce a disk at each of its points and fail to run between the opposite ends of a properly embedded $D^2 \times R$.

2. Preliminaries. The notations from reference [3] will be followed. Unless otherwise stated, the target 3-manifolds for the proper knots will be piecewise linear and non-compact. A map $f : X \to Y$ is called *proper* if for all compact $C \subset Y$, $f^{-1}(C)$ is compact in X. A proper knot in a 3-manifold M^3 is a topological proper embedding $f : \mathbb{R}^1 \to M^3$. Two proper knots f and g will be said to be *equivalent* if there exists a topological proper map $F : \mathbb{R}^1 \times [0,1] \to M^3$ so that $f = F_0$, $g = F_1$ and that F_t is an embedding for each $t \in [0,1]$. F is called a *proper isotopy*. If F is a piecewise linear (p. l.) map, we then say that f and g are p. l.-equivalent.

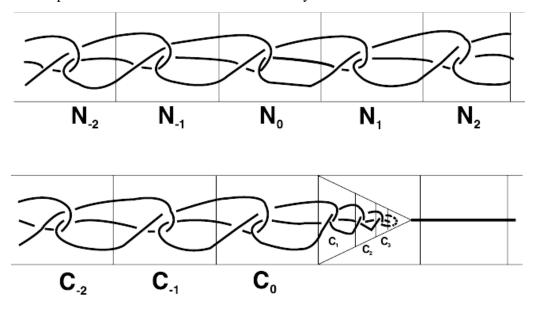
In this paragraph, we review the definition of an *end* of a non-compact manifold M: let $\{K_i\}$ be a compact exhaustion of M (that is, $M = \bigcup_i K_i$, $i \in \{1, 2, 3...\}$, each K_i is compact, and $K_i \subset int(K_{i+1})$. Now form a sequence $U_1 \supset U_2 \supset U_3 \supset \ldots$ where each U_i is a path component of $M - K_i$ and each U_i has non-compact closure. Note that each U_i is open, has compact frontier and $\bigcap_i U_i = \emptyset$. If another such sequence of open sets V_i are generated from another compact exhaustion of M, we say that $\{U_i\}$ and $\{V_i\}$ are *equivalent* if they are cofinal; that is, for all i there exists a j so that $V_j \subset U_i$ and that for all m, there exists an n so that $U_n \subset V_m$. An equivalence class of such sequences is called an end of M, and the set of ends of M will be denoted by e(M). An end $\Gamma \in e(M)$ will be called a *collared end* if there exists

 $\{V_i\} \in \Gamma$ and an index *j* so that V_j is p. l. homeomorphic to $W \times [0, \infty)$ where *W* is a p. l., closed connected surface. A *W*-end denotes a collared end with collar surface *W*. The set corresponding to a collar $W \times [0, \infty)$ associated with a collared end Γ will be denoted by *E*.

In this paragraph, we state what is meant by a proper knot *running between* ends Γ_1 and Γ_2 . Let $g : M \to N$ be a proper map between manifolds and let $\{U_i\} \in \Gamma_M \in e(M), \{V_j\} \in \Gamma_N \in e(N)$. *g sends end* Γ_M *to* Γ_N for all *j*, there exists an *i* so that $g(U_i) \in V_j$. *g* induces a well defined map $\hat{g} : e(M) \to e(N)$ where for all $\Gamma \in e(M), \hat{g}$

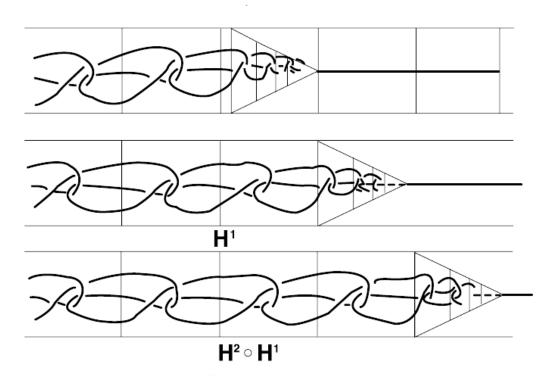
sends Γ to $g(\Gamma)$. Note that $e(\mathbb{R}^1)$ is denoted by $\{-\infty,\infty\}$. Given a proper knot $f : \mathbb{R}^1 \to M$ and ends Γ_1 and Γ_2 (possibly the same end), we say that f runs between Γ_1 and Γ_2 if $\widehat{g}(\{-\infty,\infty\}) = \{\Gamma_1,\Gamma_2\}$. It is clear that if f and g are equivalent proper knots, then f and grun between the same ends.

3. Classification and Smoothing Theorems. Let *N* be the non-compact manifold $D^2 \times R^1$, where D^2 is a 2-disk. We think of *N* as being the union of "cans" $N_i = D^2 \times [i, i+1], i \in \{..-2, -1, 0, 1, 2...\}$ which are glued together in a standard way. We can use cylindrical coordinates (x, r, θ) , where $x \in R^1, r \in [0, 1], \theta \in [0, 2\pi)$ to describe the location of points in *N*. Denote the two ends of *N* by $-\infty$ and ∞ .



Theorem 3.1. Let f be a proper knot running from $-\infty$ to ∞ in N. Then f is equivalent to the proper knot $h : \mathbb{R}^1 \to N$ where h(x) = (x, 0, 0) for all $x \in \mathbb{R}^1$. That is, up to orientation and equivalence, there is a unique proper knot running between the opposite ends of $\mathbb{D}^2 \times \mathbb{R}^1$.

Proof. The idea of the proof is conveyed in Figures 1, 2 and 3. One can think of a proper knot running between the opposite ends of N as "piercing a disk at infinity."



Let *f* be a proper knot running between $-\infty$ and ∞ in *N*. With no loss of generality, we can assume that for all $k \in \{-2, -1, 0, 1, 2..\}$, $k = \sup\{x \in \mathbb{R}^1 | f(x) \in N_{k-1}\}$. Consider the solid "cone" $C \subset N$ with missing "tip", where the base of *C* is $\mathbb{D}^2 \times \{0\}$, and whose curved surface is given by the image of $\partial \mathbb{D}^2 \times \mathbb{R}^1$ (here, ∂ denotes "boundary of") under the map $\gamma : N \to N$ by

$$\gamma(x, r, \theta) = \begin{cases} (x, r, \theta) \text{ for } x < 0\\ (\frac{x}{x+1}, \frac{r}{x+1}, \theta) \text{ for } x \ge 0 \end{cases}$$

The interior of C is homeomorphic to $(D^2 - \partial D) \times [0, \infty)$, and we let C_i denote the image

of N_i under γ . Let $\phi: (-\infty, 1) \to \mathbb{R}^1$ be defined by $\phi(x) = \begin{cases} x, x \le 0 \\ \frac{x}{1-x}, 0 < x < 1 \end{cases}$. We now consider the proper knot $g: \mathbb{R}^1 \to N$ defined by $g(x) = \begin{cases} \gamma \circ f \circ \phi(x) \text{ for } x < 1 \\ (x, 0, 0) \text{ for } x \ge 1 \end{cases}$. Clearly, g

is a proper knot. Claim One: g is equivalent to the "trivial "proper knot h. Proof of Claim One: One can use a meridional disk, say $D^2 \times \{2\}$, to comb (or push, as a plunger in a syringe) the non-trivial parts of g to $-\infty$. This is Proposition 2.2 of reference [3], equations with coordinates can be found in Lemma 2.2 of reference [7] See Figure 2.

Claim Two: g is equivalent to the proper knot f. Proof of Claim Two: Please refer to Figure 3. There is an ambient isotopy H^1 : $N \times [0, 1] \rightarrow N$ that takes C_1 to N_1 so that $H^1_1(C_1) = \gamma^{-1}(C_1)$. Furthermore, we have H^1 taking $\bigcup_{i\geq 2} C_i$ into N_2 as well as fixing N_j , for all $i \leq 0$. Note that $H_1^1 \circ g$ defines a proper knot where

 $Image(H_1^1 \circ g) \cap N_1 = \gamma^{-1}(\gamma \circ f \circ \phi) \cap N_1 = Image(f \circ \phi) \cap N_1 = Image(f) \cap N_1$. We now compose $H_1^1 \circ g$ with an isotopy ϕ_1 which reparametrizes \mathbb{R}^1 as follows: ϕ_1 takes $(-\infty, 0]$ to $(-\infty, 0]$ by the identity map, $(0, \phi^{-1}(1)]$ to (0, 1] via the map $\phi(x) = \frac{x}{1-x}$, $(\phi^{-1}(1), 1)$ to (1, 0)2) and $[1, \infty)$ to $[2, \infty)$. Let $g_1 = H_1^1 \circ g \circ \phi_1$.

Next we choose an ambient isotopy H^2 that fixes N_j for all $j \leq 1$, takes $H_1^1(C_2)$ to N_2 by $H_1^2(H_1^1(C_2)) = \gamma^{-1}((H_1^1)^{-1}(H_1^1(C_2)))$, and takes $H_1^1(\bigcup_{i\geq 3} C_i)$ into N_3 . We now compose $H_1^2 \circ H_1^1 \circ g_1$ with a reparametrization isotopy ϕ_2 (where ϕ_2 takes ($-\infty$, 1] to ($-\infty$, 1] by the identity map, $(1, \phi_1^{-1} \circ \phi^{-1}(2)]$ to (1, 2] via the map $(\phi_1 \circ \phi)$, $(\phi_1^{-1} \circ \phi^{-1}(2), 2)$ to (2, 3) and $[2, \infty)$ to $[3, \infty)$) to obtain a proper knot g_2 . Note that $f|(-\infty, 2] = g_2|(-\infty, 2]$. We repeat this process to obtain for all positive integers k, a proper knot $g_k = H_1^k \circ g_{k-1} \circ \phi_k$, where $H_1^k(H_1^{k-1}(H_1^{k-2}(\dots(H_1^1(C_k))\dots)) = \gamma^{-1}((H_1^k \circ H_1^{k-1}\dots \circ H_1^1)^{-1}(H_1^k \circ H_1^{k-1}\dots \circ H_1^1)(C_k)$ and ϕ_k is an appropriate reparametrization isotopy. Note that $f[(-\infty, k] = g_k](-\infty, k]$.

Now concatenate the proper isotopies $H^1, H^2, H^3, \dots H^k$... in the following way: let σ_k be a map $\sigma_k : [0,1] \times [\frac{k-1}{k}, \frac{k}{k+1}] (k \in \{1,2,3,\dots\})$ defined by $\sigma_k(t) = (\frac{1}{k(k+1)})t + \frac{k-1}{k}$ for $t \in [0,1]$. We can then define a proper isotopy $H : [0,1] \times \mathbb{R}^1 \to N$ by $H(\sigma_k(t), x) = H^k(t, x)$ for $t \in \left[\frac{k-1}{k}, \frac{k}{k+1}\right)$ and H(1, x) = f(x).

It is immediate that *H* is continuous on $[0, 1) \times \mathbb{R}^{1}$. To see that *H* is continuous on $[1-\epsilon, 1] \times \mathbb{R}^1$ (ϵ small and positive), let $x \in \mathbb{R}^1$ be given. There exists a positive integer k so that $x \in [k, k+1]$. Note that for all integers $n \ge 1$, and $y \ge x$, $g_{k+1}(y) = g_{k+n}(y) = f(y)$. Hence *H* is continuous. We now check that *H* is proper: given $X \subset N$, *X* compact, there exists integers *i* and *j* so that $X \subset \bigcup_{i \le k \le j} N_k$. Note that for $k \ge j+1$, $(H^{k+1})^{-1}(X) = f^{-1}(X)$. So, $H^{-1}(X) =$

 $(H) = (H) \{ [\frac{k+1}{k+2}, 1] \times \mathbb{R}^1 \})^{-1}(X) \cup (H|\{[0, \frac{k+1}{k+2}] \times \mathbb{R}^1 \})^{-1}(X) = f^{-1}(X) \cup (H|\{[0, \frac{k+1}{k+2}] \times \mathbb{R}^1 \})^{-1}(X) \text{ which is compact since it is the union of two compact}$ sets.

We get the immediate corollary:

Corollary 3.2. Let f be a proper knot in a 3-manifold M. If the image of f runs between the opposite ends of a $D^2 \times R^1$ which is properly embedded in M, then f is equivalent to a piecewise linear proper knot.

Corollary 3.2 leads to a classification theorem for proper knots running between the

opposite ends of the manifold $S^2 \times R^1$.

Corollary 3.3. Up to orientation and equivalence, there is a unique proper knot running between the opposite ends of $S^2 \times R^1$.

Proof. Let *f* be a proper knot running between the opposite ends of $S^2 \times R^1$. By using a general position argument with a p. l. approximation of *f*, we can find some "collar line" proper knot *g* whose image is $* \times R^1$, $* \in S^2$. Hence, the image of *f* is properly embedded in the properly embedded $D^2 \times R^1$ which is formed by the complement of a regular neighborhood of the image of *g*. Hence *f* is equivalent to a p. l. proper knot.

Note that it is still an open question whether every proper knot that runs to and from the same end of $S^2 \times R^1$ is equivalent to a p. l. proper knot; however such a "non-smoothable" proper knot would have to be wild enough to fail to pierce a disk at any of its points and badly embedded enough to fail to run in between the opposite ends of a properly embedded $D^2 \times R^1$.

We now use the work of Bothe [1] to give some sufficient conditions for a proper knot to be smoothable. We say that a proper knot has a *normal neighborhood at* f(x) if there exists a 3-ball *B* containing *x* in its interior such that the image of *f* intersects ∂B in a two point set and *f* pierces ∂B at both intersection points. We say that *f* is *locally homogeneous* in *M* if, given any points f(x) and f(y), there are subarcs of the image of *f*, L_x and L_y which contain f(x) and f(y)in their interiors and an orientation preserving homeomorphism $h : M \to M$ such that $h(L_x) = L_y$ and h(x) = y. *f* is *homogeneous* if given any pair of points (f(x), f(y)), there is an orientation preserving homeomorphism $h : M \to M$ such that *h* fixes the image of *f* setwise and h(f(x)) = f(y). It is easy to see that if *f* is homogeneous, *f* is locally homogeneous.

Theorem 3.4. Suppose *f* is a proper knot whose image is locally homogenous in *M* and pierces a disk at one of its points(and therefore all of its points). Then *f* is equivalent to a p. l. proper knot.

Proof. We suppose that $K_1, K_2, \ldots, K_n, \ldots$ is a compact exhaustion for M. With no loss of generality, we can assume that $f(0) \in K_1$, and that for all positive integers $i, i = \min\{x \in (0, \infty) | f(x) \in \partial K_i\}$ and $-i = \max\{x \in (-\infty, 0) | f(x) \in \partial K_i\}$. Because the image of f is locally homogeneous and pierces a disk at each of its points, the work of Bothe [1] shows that each point of f(x) has a normal neighborhood of arbitrarily small size. Choose a covering B₁ of f[-1, 1] which includes normal neighborhoods B_{-1}, B_1 of f(-1) and f(1) respectively. In 2.12 and 2.13 of [1] (in the proof of Theorem 1), it is shown that the elements of B₁ can be chosen to be disjoint if they have subarc of f in common, and to intersect such that their boundaries meet in a single simple closed curve. Call such a collection "tubular." Let $x_1 = \min\{x \in \mathbb{R} | f(x) \in B_{-1}\}$ and $y_1 = \max\{x \in \mathbb{R} | f(x) \in B_1\}$. Then f([-1, 1]) misses $f((-\infty, x_1]) \cup f([y_1, \infty))$ by a set distance ϵ_1 . We can then obtain a new minimal covering of $f([x_1, y_1])$ by normal neighborhoods which are of size less that $\epsilon_1/3$. Call the union of the covering normal neighborhoods N'_1 .

Now consider the arcs $f([y_1, 2])$ and $f([-2, x_2])$. These arcs have a covering B₂ by normal neighborhoods of size less that $\epsilon_1/3$ which include the normal neighborhoods B_{-2} and B_2 of f(-2) and f(2). N'_1 and the elements of B₂ can be modified so as to constitute a tubular collection of normal neighborhoods of $f([-2, x_1])$ and $f([y_1, 2])$. Define x_2 and y_2 as before, and note that f([-2, 2]) misses $f((-\infty, x_2]) \cup f([x_2, \infty))$ by a set distance ϵ_2 . So we can modify the tubular collection of coverings again so as to ensure that the size of all elements of B₂ are less than $min\{\epsilon_1/3, \epsilon_2/3\}$. We can modify N'_1 again at its "end elements" (the elements that cover $f(x_1)$ and $f(y_1)$) to get N_1 such that the covering of f([-2, 2]) remains tubular.

This process can be repeated for all $f([-i, i] \subset K_i \ (i \ge 3)$. Note that the building of the tubular cover for $f([-i, x_{i-1}])$ and $f([y_{i-1}, i])$ does not require modifying N_j for $j \le i-2$. Hence, in a manner similar to the way a "defining torus" was fit around a simple closed curve in [1],

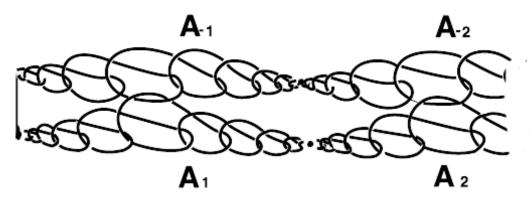
we can fit a properly embedded $D^2 \times R^1$ where each $D^2 \times [-i - \delta_i, i + \delta_i]$ can be identified with N_i ($\delta_i > 0$). Then by Theorem 3.1, *f* is equivalent to the centerline of this embedded $D^2 \times R^1$ and thus is equivalent to a p. 1. proper knot.

We now present an analogy to Proposition 3.3 of [3] for topological proper knots.

Corollary 3.5. Let f be a proper knot in a 3-manifold M which runs to a sphere end Γ . Then f is equivalent to a proper knot g which follows a collar ray $* \times [a, \infty)$ (a > 0) of the collar E associated with Γ . Furthermore, it can be assumed that the proper isotopy connecting f to g fixes f on M - E.

Proof. By adjustment with an ambient isotopy, it can be assumed that the image of *f* misses some collar line $w \times [0, \infty)$ of *E*. Then one can take the complement of the regular neighborhood of $w \times [0, \infty)$ within Γ to obtain a properly embedded $D^2 \times [0, \infty) \subset E \subset M$ that contains the image of a "selected half" of *f*, say $f|[0, \infty)$. The proper isotopy discussed in Claim Two of Theorem 3.1 can be used to properly isotope *f* to a proper knot *g* which follows the centerline of the properly embedded $D^2 \times [a, \infty)$ for some a > 0. Note that this isotopy is topological and could well take a p. 1. proper knot to a wild one. \Box

Example 3.6. *f need not run between the ends of a properly embedded* $D^2 \times R^1 \subset M$ *in order to be smoothable.*



Consider the proper knot in \mathbb{R}^3 shown in Figure 4. One can use techniques developed by Churchard and Spring in reference [2] to isotope *f* to a p. l. proper knot; one merely places a p. l. 3-ball *B* around one of the tame points of the image of *f* in a manner such that $(B, B \cap \{Image(f)\})$ is a standard ball pair. One then "blows up" *B* and "combs the knotted part of the proper knot to infinity". On the other hand, the image of *f* does not run between the opposite ends of any properly embedded p. l. $D^2 \times \mathbb{R}^1$. This can be seen as follows: if such a $D^2 \times \mathbb{R}^1$ existed, there would be some positive integer *k* such that the subarcs A_k and A_{-k} would lie on the opposite sides of some properly embedded disk $D^2 \times \{t\}$. Hence, one could obtain disjoint 3-balls *B* and *B'* such that $A_k \subset B$ and $A_{-k} \subset B'$. However, it is shown in reference [4] (p. 166) that the arcs A_k and A_{-k} are unsplittable.

We now present a classification theorem for proper knots in solid open handlebodies with a deleted point.

Theorem 3.7. Let M' be an open solid handle body with at most a countable number of handles and let M = M' - B (where B is a p. l. 3-ball in the interior of M). If the "boundary of the handlebody end" is Γ_1 and the "boundary of the deleted ball end" is Γ_2 , then up to

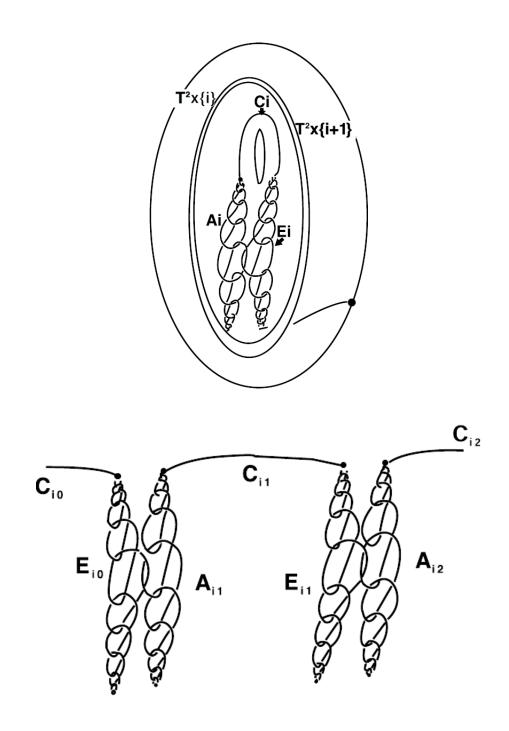
orientation and equivalence, there is a unique proper knot running between Γ_1 and Γ_2 .

Proof. Let *G* be the one dimensional spine of M' and let N(G) denote a regular neighborhood of *G* in M'. Without loss of generality, we may assume that the collar of the deleted 3-ball end E_1 is contained in N(G). By Corollary 3.5, we may assume that *f* follows some collar ray of E_1 and, by general position, misses *G*. Hence, we can assume that the image of *f* contains a properly embedded collar ray $s \times (-\infty, a]$ ($s \in S^2, a < 0$) which runs to Γ_2 and, for some $\epsilon > 0$, meets every product level $G \times (0, \epsilon)$ transversely at one point. Consequently, we can assume that $Image(f) \cap (M' - N(G))$ has at least one tame point.

It follows from the techniques of Proposition 2.2 of [3] that *f* can be isotoped to a p. l. proper knot which, outside of $G \times (0, \frac{\epsilon}{2})$, follows a collar ray of $E_1, w \times (\frac{\epsilon}{2}, \infty)$ ($w \in W_1$); one uses the collar product structure to comb the proper knot to infinity at E_1 . Hence the image of *f* can be properly isotoped to a proper knot *g* so that $Im\{g\} = \{w \times (\frac{\epsilon}{2}, \infty)\} \cup \{s \times (-\infty, b]\}$ where $(s, b) \in E_2$ and $(w, \frac{\epsilon}{2}) \in E_1$ represent the same point in M. \square

Example 3.8. A proper knot can fail to lie on a properly embedded $D^2 \times R^1$ even if it runs between different ends of an open 3-manifold.

Let $M = T^2 \times R$ where T is a torus. Think of M as being built up as $\bigcup_{\infty>i>-\infty} T_i$ where $T_i = T^2 \times [i, i+1]$. Let T'_i denote the solid torus $T_i \cup \{\bigcup_{\infty>j>i} T_j\}$. Consider the proper knot f whose image is built up by the arcs $A_i \cup C_i \cup E_i$ as depicted in Figure 5. Subarcs A_i and E_i cannot be split from each other by a ball. Claim: the arc $R_i = A_i \cup C_i \cup E_i$ lies in no 3-ball $B \subset T'_i$. Proof of claim: suppose a ball B existed. Then look at the universal cover \hat{T} obtained by splitting T_i along a meridional disk which intersects both A_i and E_i in two points near where they "link". See Figure 6. B lifts to disjoint preimages $...\hat{B}_{-1}, \hat{B}_0, \hat{B}_1, \hat{B}_2...$ each of which can contain only a finite number of components of \hat{R}_i which we denote by \hat{R}_{ij} . Hence, in \hat{T} , there exists an index k such that \hat{R}_{ik} is split from \hat{R}_{ik+1} by a ball. This is impossible. Therefore the arc R_i does not lie in any 3-ball in M. Hence it is impossible for the image of f to run between the opposite ends of any properly embedded $D^2 \times R$.



We conclude this paper with a result that allows us to smooth certain types of proper knots that run to a sphere end. Recall that a proper knot *f* pierces a disk at *p* if there exists a p. l. disk *D* where ∂D links *f* (in the sense that ∂D cannot be shrunk to a point in the complement of the image of *f*) and $D \cap \{Imf\} = p$.

Proposition 3.9. Let f be a proper knot in M^3 which pierces a disk at each of its points, runs to a sphere end Γ_2 and whose wild points are isolated. Then there is a proper isotopy

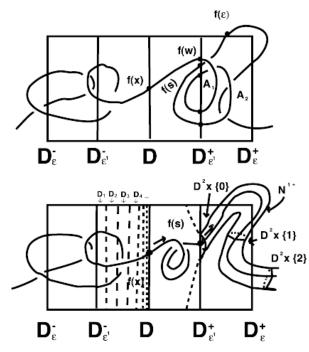
that takes f to a proper knot g which pierces a disk at each of its points and follows a collar ray in Γ_2 .

Proof. Notice that Proposition 3.9 does not follow from Corollary 3.5 as the "collar ray following" proper knot promised by the corollary may well fail to pierce a disk at some of its points. We start our proof by proving the following:

Lemma 3.10. Suppose f is a proper knot which runs from an end Γ_1 to a sphere end Γ_2 , pierces a disk at each of its points and has n ($0 < n < \infty$) wild points in $\Sigma \times [0, \infty) \subset E_2$ where Σ is some level two-sphere in E_2 . Then f is properly isotopic to a proper knot f' which pierces a disk at each of its points and has n - 1 wild points in $\Sigma \times [0, \infty)$ and follows a collar ray of E_2 . Furthermore, if the first point of f to hit $\Sigma \times \{0\}$ is f(y), f' can be chosen so that $f((-\infty, y]) = f'((-\infty, y])$.

Proof. First note that *f* is properly isotopic to a proper knot which follows a collar line of E_2 . One merely notices that there is a level 2-sphere $\Sigma' = S^2 \times \{0\}$ of E_2 for which $f|\{f^{-1}(S^2 \times [0,\infty))\}$ contains no wild points. Therefore *f* can be assumed to be a p. l. embedding and Proposition 3.3 of [3] can be applied to "straighten out the end of *f*" in E_2 .

Order the wild points of $f([y, \infty))$ and let p = f(x) be the last wild point of $f(f(x, \infty))$ contains no wild points). Then there exists some x_1 and x_2 where $y < x_1 < x < x_2$ such that $f([x_1, \infty))$ has only one wild point p and $f([x_2, \infty))$ has no wild points. We will show how to construct a proper knot f_1 which is equivalent to f where $f_1((-\infty, x_1]) = f((-\infty, x_1])$ and $f_1([x_1, \infty))$ is p. 1..



First, we will fix notation. See Figure 7. If *D* is a disk pierced by *f* at p = f(x), D_{β} denotes the product $D \times [-\beta, \beta]$, D_{β}^+ denotes $D \times [0, \beta]$ and D_{β}^- denotes $D \times [-\beta, 0]$. Assume that D_{β}^+ meets $f([x, x + \delta))$ and D_{β}^- meets $f((x - \delta, x])$ for all $\delta > 0$. Claim: There exists a $\sigma > 0$ such that $D_{\sigma}^+ \cap f((-\infty, x]) = \emptyset$ and $D_{\sigma}^-([x, \infty)) \cap f([x, \infty)) = \emptyset$. Proof of claim. Given $\sigma' > 0$, choose $\delta > 0$ so that $f([x - \delta, x + \delta]) \subset D_{\sigma'}$. Because *D* separates $D_{\sigma'}$ and *D* meets the image of *f* only at $f(x), f([x - \delta, x)) \subset D_{\sigma'}^-$. Because *f* is proper, $f((-\infty, x - \delta]) \cap D_{\sigma'}$ is a compact set which misses *D*. Therefore there is some $\epsilon \le \epsilon'$ such that

 $f((-\infty, x - \delta]) \cap D_{\sigma}^{+} = \emptyset$. The same argument works for $D_{\sigma}^{-}([x, \infty))$ and $f([x, \infty))$.

Next choose $\epsilon > 0$ so that $D_{\epsilon}^{+} \cap f((-\infty, x]) = \emptyset$ and $D_{\epsilon}^{-}([x, \infty)) \cap f([x, \infty)) = \emptyset$ and let t > x be the first point of $[x, \infty)$ where f(t) meets $\partial(D\epsilon^{+} - D)$. Assume that the intersection is transverse to $\partial(D\epsilon^{+} - D)$. Choose $0 < \epsilon' < \epsilon$ so that $\partial D \times [-\epsilon', \epsilon']$ is disjoint from the image of f and that $f([t, \infty))$ is disjoint from $D_{\epsilon'}^{+}$. Let $w = \min\{y \in \mathbb{R}, y \in f^{-1}(D \times \{\epsilon'\}) \text{ and } s = \max\{y \in \mathbb{R}, y \in f^{-1}(D_{\epsilon'})\}$. Note that $f^{-1}(D_{\epsilon'}) \subset [x, s] \subset [x, t]$ and $f(s) \in D \times \{\epsilon'\}$. Suppose that $w \neq s$. Since f([w, s]) is a tame arc which lies entirely in D_{ϵ}^{+} , we can assume that $f([w, s]) \cap (D \times [\epsilon', \epsilon])$ is a finite collection of p. I. arcs, say $A_1, \ldots A_k$, each of which has a tubular neighborhood. Because f eventually follows a collar ray to a sphere end Γ_2 , it is possible to unlink each A_i with the image of f by repeatedly using the lamp cord trick (the "lassos of reference [3]). We isotope small subarcs of the A_i along a regular neighborhood of $f([s, \infty))$ to a level two-sphere which the image of f intersects only once. Then one can, by an ambient isotopy, take each A_i into the interior of $D_{\epsilon'}^{+}$. Therefore, we can adjust f by an ambient isotopy so that w = s.

Now we can assume that $Im(f) \cap D \times \{\epsilon'\} = s$. Next let N'^+ denote a tubular neighborhood of $f([s, \infty))$. Then $D_{\epsilon'}$ can be glued to N'^+ in a standard way as to form a properly embedded $D^2 \times \mathbb{R}^+$ which contains $f([x, \infty))$ as a properly embedded ray with $f(x) \cap (D^2 \times \{1\}) = p$ and $D^2 \times \{0\}$ identified with $D \times \{-\epsilon'\}$ and $D^2 \times \{1\}$ identified with $D \times \{0\}$. Denote this $D^2 \times \mathbb{R}^+$ by N^+ .

Recall that ϵ' was chosen so that $Im(f((-\infty, x)) \cap \partial(D_{\epsilon'}) \subset D \times \{-\epsilon'\}$. Partition $D_{\epsilon'}^-$ by level disks $D \times \{-\frac{\epsilon'}{n}\}$ for $n \in \{1, 2, 3, ...\}$ and denote $D \times [\frac{-\epsilon'}{n}, \frac{-\epsilon'}{n+1}]$ by D_n . There is an ambient isotopy of M which is the identity outside of a regular neighborhood of N'^+ which takes D_1 to $D^2 \times [0, 1]$ and $\bigcup_{\infty > j \ge 2} D_j$ into $D^2 \times [1, 2)$. Call this ambient isotopy F_1 . This is very similar to the isotopy described in the proof of Theorem 3.1. We can then follow F_1 by an ambient isotopy F_2 which is the identity on $D^2 \times [0, 1]$, takes $F_1(D_2)$ to $D^2 \times [1, 2]$ and $F_1(\bigcup_{\infty > j \ge 3} D_j)$ into $D^2 \times [2, 3)$. In a similar way, we define an ambient isotopy F_k which is the identity on $D^2 \times [k-2, k-1]$, takes $F_{k-1}(D_k)$ to $D^2 \times [k-1, k]$ and $F_{k-1}(\bigcup_{\infty > j \ge k+1} D_j)$ into $D^2 \times [k, k+1)$. Concatenating the isotopies in a standard way and applying a standard reparametrization yields an isotopy that takes f to a proper knot f'. Note that if $x_1 \in \mathbb{R}$ is the first point of f to meet $D \times \{\epsilon'\}$ then $f((-\infty, x_1]) = f'((-\infty, x_1])$ and f' has one less wild point than f. The Lemma is proved. \Box

To prove the Proposition, we start by finding an unbounded set of level two spheres $\Sigma_i \in E_2$ arranged in such a way so that $max(f^{-1}(\Sigma_i)) < min(f^{-1}(\Sigma_{i+1}))$ for all $i \ge 1$. With no loss of generality, we can assume that the Σ_i miss the wild points of f. Let f_i denote the proper knot that agrees with f for all $x \le max(f^{-1}(\Sigma_i))$ and follows a collar ray afterward. Note for all $j > i > 0, f_j$ agrees with f_i for all $x \le max(f^{-1}(\Sigma_i))$.

By applying the Wild Combing Lemma (Lemma 3.10) a finite number of times, we see that for all i > 0, there exists a proper isotopy $F^i : \mathbb{R} \times [0,1] \to M^3$ such that $F^i(y,0) = f_i(y), F^i(y,1) = f_{i+1}(y)$ and for all $x \le \min(f^{-1}(\Sigma_i))$ and $t \in [0,1], F^i(x,t) = f(x)$.

We now concatenate the proper isotopies F^i to obtain a proper isotopy F which takes the proper knot f_1 to f in the following way: let $\sigma_i : [\frac{i-1}{i}, \frac{i}{i+1}] \to [0,1]$ be defined by $\sigma_i(t) = i(i+1)(t-\frac{i-1}{i})$. Then define $F : \mathbb{R} \times [0,1] \to M$ by

$$F(x,t) = \begin{cases} F^i(x,\sigma_i(t)) \text{ for } t \in \left[\frac{i-1}{i}, \frac{i}{i+1}\right] (i \in \{1,2,3...\}) \\ f(x) \text{ for } t = 1 \end{cases}$$
. It is clear that *F* is continuous.

To see that *F* is proper we suppose that *K* is a compact subset of *M* and show that $wd(F^{-1}(K))$, defined as $wd(F^{-1}(K)) = max\{t|F(x,t) \cap K \neq \emptyset\} - min\{t|F(x,t) \cap K \neq \emptyset\}$ is bounded. First

note that $wd(F^{-1}(K \cap closure\{M - \{\Sigma \times [0, \infty)\}\}) = wd(f^{-1}(K \cap closure\{M - \{K \times [0, \infty)\}\})$ because F(x, t) = f(x) for all ((x, t) where $f(x) \notin \Sigma \times [0, \infty)$. So we need only check for $K \in \Sigma \times [0, \infty)$. Since K is compact, $K \subset \Sigma \times [0, m]$ for some $m \in \{1, 2, ...\}$. Consequently, there exists an $i \in \{1, 2, 3, ...\}$ such that for all $j \ge i$, $(F^j)^{-1}(K) = f^{-1}(K)$. So, $wd(F^{-1}(K)) \le (wd(f^{-1}(K) + wd((F^1)^{-1}(K)) + ... + wd((F^i)^{-1}(K))))$ and therefore is finite. Hence F is proper and the Proposition is proved.

Theorem 3.11. Suppose f is a proper knot which runs from a collared end E_1 to a sphere end E_2 . Suppose f pierces a disk at all of its points and that its wild points are isolated. Then f is properly isotopic to a smooth (or p. l.) proper knot.

Proof. From Proposition 3.9 it can be assumed that f follows a collar ray in E_2 . We can also assume that all of the wild points of f lie in E_1 . Because the wild points of f are isolated, fhas only a finite number of wild points in $\Sigma \times [0,m] \subset E_1$ where Σ is a level surface (possibly of infinite genus). Let $\sigma \subset \mathbb{R}$ denote the smallest closed interval containing $f^{-1}(\Sigma \times [0,m])$. Then $f(\sigma)$ is an embedded arc with only a finite number of wild points. These can be ordered by the order of their preimages in σ . Call these points x_1, x_2, \ldots, x_k . First use Lemma 3.10 to comb the first wild point $f(x_1)$ to infinity in E_2 ; the details are exactly as in Lemma 3.10. Subsequently comb x_2, x_3, \ldots, x_k . Hence, we can assume that f is equivalent to a proper knot f' where $f'(\sigma)$ is a smoothly embedded proper arc. We now use Proposition 3.5 of [3] to properly isotope f' to a proper knot which intersects a level surface $\Sigma' \times \{t\} \subset \Sigma \times [0,m]$ in exactly one point: basically one gets a convenient projection of f' and then repeatedly uses the "lamp cord" trick around a level two-sphere to change all crossings to undercrossings and then straightens f' so as to hit a selected level surface exactly once.

Next, one uses Σ' to comb all of the part of f' lying in $\Sigma' \times [t, \infty)$ to infinity in E_1 to obtain a proper knot f'' which follows a collar ray in E_1 . f'' is equivalent to f and contains no wild points. \Box

The following corollaries are obtained from Theorem 3.11 and from Theorem 4.3 of reference [3].

Corollary 3.12. Suppose f and g are proper knots which run from a collared end E_1 to a sphere end E_2 . Suppose f and g pierce a disk at all of their points and their wild points are isolated. Then if f and g are connected by a proper homotopy, then they are connected by a proper isotopy. That is, in this case, proper homotopy implies proper isotopy.

Proof. Let f' denote the smooth proper knot that is equivalent to f and g' the smooth proper knot that is equivalent to g. It is easy to see that f' is connected to g' by a proper homotopy H. The Smooth Approximation Theorem implies that there is a smooth proper homotopy which is homotopic to H that connects f' to g'. It follows from Theorem 4.3 of [3] that f' and g' are connected by a smooth proper isotopy. Hence, f can be connected to g by a proper isotopy. \Box

We now state a corollary concerning arbitrary topological proper knots which run from a collared end to a sphere end.

Corollary 3.13. Suppose f and g are proper knots which run from a collared end E_1 to a sphere end E_2 . If f is connected to g by a proper homotopy and f' is a smooth proper knot which is properly homotopic to f and g' is a smooth proper knot which is properly homotopic to f and g' is a smooth proper knot which is properly homotopic to g, then f' and g' are connected by a smooth, proper isotopy. In other words, if f and g are homotopic, then their smooth homotopy representatives are equivalent.

4. Questions. Note that the classification of proper knots running between the opposite ends of $S^2 \times R$ is complete, both in the smooth and in the topological category. However, the question of whether all smooth proper knots which run between the opposite ends of a $D^2 \times R$ are equivalent in the smooth category (i. e., are connected by a smooth proper isotopy) remains open.

The topological proper knot classification for proper knots in manifolds other than $S^2 \times R$

or $D^2 \times R$ is, to the author's knowledge, unknown. In fact, the classification of smooth proper knots which run between the opposite ends of $F^2 \times R$ ($F^2 \neq S^2$) (a question posed by Churchard and Spring in [3]) remains open.

Are there any non-smoothable proper knots? Such a proper knot would have to either fail to pierce a disk at some of its points, or fail to be locally homogenous. The proper knot of Example 3.8 is a possible candidate.

References.

1. H. G. Bothe, Homogeneously Wild Curves and Infinite Knot Products, Fundamenta Math., CXIII (1981) 91-111.

2. P. Churchard and D. Spring, Proper Knot Theory in Open 3-Manifolds, Trans. American Math. Soc., 308 (1988) 133-142.

3. P. Churchard and D. Spring, On Classifying Proper Knots in Open 3-Manifolds, Topology and its Applications, 34 (1990) 113-127.

4. R. H. Fox, A Quick Trip Through Knot Theory in Topology of 3-Manifolds. Ed. by M. K. Fort Jr., Prentice-Hall (1962), pp. 120-167.

5. M. W. Hirsch, Differential Topology, Springer Verlag, New York, 1976.

6. O. Nanyes, A Note on Topological Proper Knot Theory, Houston Journal of Mathematics, Vol. 19, No. 2, (1993) 295-300.

7. O. Nanyes, P. L. Proper Knot Equivalence Classes are Generated by Locally Flat Isotopies, Journal of Knot Theory and Its Ramifications, Vol. 4, No. 2 (1995) 329-342.