
Abstract

A topological proper knot is a proper embedding f : R1 → M3 of
the real line into an open 3-manifold. Two proper knots are equivalent
if they can be connected by a topological proper isotopy. In this paper,
we answer a question posed by the author in [6] and show that, up to
topological equivalence and orientation, all proper knots running between
the opposite ends of D2 × R1 are equivalent. Then sufficient conditions
for a topological proper knot to be equivalent to a piecewise linear proper
knot are given.
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1. Introduction. Proper knot theory deals with proper embeddings of
the real line into open 3-manifolds. Two such embeddings f and g are said to
be equivalent if there is a proper isotopy connecting the two embeddings. This
is, in general, a non-ambient classification theory. For example, there is one
equivalence class of smooth (or p. l.) proper knots in R3 (e. g., see page 183,
exercise 9 of [5] or reference [2]).
Churchard and Spring have obtained classification theorems for smooth

proper knots in open solid handlebodies and Klein bottles (of countable genus)
and for F2 × R (where F is a smooth, closed surface) ( [2] and [3]). It was
shown that, up to equivalence and orientation, there is a unique smooth proper
knot in the open solid handlebodies and Klein bottles. It was also shown that
smooth proper knot equivalence classes in S2 × R are completely determined
by the ends to which the proper knot in those equivalence classes run. In [7],
the author showed that two p. l. proper knots that are equivalent under a p. l.
proper isotopy are connected by a locally flat p. l. proper isotopy. Hence, the
smooth and p. l. classification of proper knots are very similar.
In [6], the author modified Churchard and Spring’s techniques to show that

topological proper knots in R3 which are tame at a point are all equivalent.
In fact, those theorems apply to a proper knot which pierces a disk at one
of its points. However, it is still unknown whether there are any inequivalent
topological proper knots in R3.
The main results of this paper are the following:
1) Theorem 3.1, which states that if f is a proper knot running between the

opposite ends of D2 × R, then, up to orientation, f is equivalent to the proper
knot which runs along 0×R. The idea, which was suggested to the author my
Bob Daverman and Ric Ancel, is to use an equivalence by a “plunger” technique,
as suggested by Figures 1, 2 and 3.
2) Theorem 3.4, which states that if the image of f pierces a disk at all of

its points and is locally homogenous then f is equivalent to a p. l. proper knot
and
3) Theorem 3.11, which states that if f is a proper knot whose set of wild

points have no limit point and runs between a sphere end and a collared end
and pierces a disk at each of its points then f is equivalent to a p. l. (or smooth)
proper knot.

2



It is an easy consequence of Theorem 3.1 that a proper knot which can be
“engulfed” to run between the opposite ends of an embedded D2×R is equivalent
to a p. l. proper knot. Hence any “non-trivial” proper knot in R3 would have
to fail to pierce a disk at each of its points and fail to run between the opposite
ends of a properly embedded D2 ×R.

2. Preliminaries. The notations from reference [3] will be followed.
Unless otherwise stated, the target 3-manifolds for the proper knots will be
piecewise linear and non-compact. A map f : X → Y is called proper if for all
compact C ⊂ Y , f−1(C) is compact in X. A proper knot in a 3-manifold M3

is a topological proper embedding f : R1 →M3. Two proper knots f and g will
be said to be equivalent if there exists a topological proper map F : R1 × [ 0, 1 ]
→ M3so that f = F0, g = F1 and that Ft is an embedding for each t ∈ [ 0, 1].
F is called a proper isotopy. If F is a piecewise linear (p. l.) map, we then say
that f and g are p. l.-equivalent.
In this paragraph, we review the definition of an end of a non-compact

manifold M : let {Ki} be a compact exhaustion of M (that is, M = ∪iKi, i ∈
{1, 2, 3...}, each Ki is compact, and Ki ⊂ int(Ki+1). Now form a sequence
U1 ⊃ U2 ⊃ U3 ⊃ ....where each Ui is a path component of M −Ki and each Ui
has non-compact closure. Note that each Ui is open, has compact frontier and
∩iUi = ∅. If another such sequence of open sets Vi are generated from another
compact exhaustion of M , we say that {Ui} and {Vi} are equivalent if they are
cofinal; that is, for all i there exists a j so that Vj ⊂ Ui and that for all m, there
exists an n so that Un ⊂ Vm. An equivalence class of such sequences is called an
end ofM , and the set of ends ofM will be denoted by e(M). An end Γ ∈ e(M)
will be called a collared end if there exists {Vi} ∈ Γ and an index j so that Vj is
p. l. homeomorphic to W × [ 0,∞) whereW is a p. l., closed connected surface.
A W -end denotes a collared end with collar surface W . The set corresponding
to a collar W × [ 0,∞) associated with a collared end Γ will be denoted by E.
In this paragraph, we state what is meant by a proper knot running between

ends Γ1 and Γ2. Let g : M → N be a proper map between manifolds and let
{Ui} ∈ ΓM ∈ e(M), {Vj} ∈ ΓN ∈ e(N). g sends end ΓM to ΓN for all j, there
exists an i so that g(Ui) ∈ Vj . g induces a well defined map bg : e(M)→ e(N)
where for all Γ ∈ e(M), bgsends Γ to g(Γ). Note that e(R1) is denoted by
{−∞,∞}. Given a proper knot f : R1 → M and ends Γ1 and Γ2 (possibly the
same end), we say that f runs between Γ1 and Γ2 if bg ({−∞, ∞}) = {Γ1, Γ2}.
It is clear that if f and g are equivalent proper knots, then f and g run between
the same ends.

3. Classification and Smoothing Theorems. Let N be the non-
compact manifold D2 ×R1, where D2 is a 2-disk. We think of N as being the
union of “cans” Ni = D2 × [ i, i+ 1], i ∈ {..− 2, −1, 0, 1, 2...} which are glued
together in a standard way. We can use cylindrical coordinates (x, r, θ), where
x ∈ R1, r ∈ [ 0, 1], θ ∈ [ 0, 2π) to describe the location of points in N . Denote
the two ends of N by −∞ and ∞.

Theorem 3.1. Let f be a proper knot running from −∞ to ∞ in N .
Then f is equivalent to the proper knot h : R1 → N where h(x) = (x, 0, 0) for
all x ∈ R1. That is, up to orientation and equivalence, there is a unique proper
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Figure 1:

knot running between the opposite ends of D2 ×R1.
Proof. The idea of the proof is conveyed in Figures 1, 2 and 3. One can

think of a proper knot running between the opposite ends of N as “piercing a
disk at infinity”.
Let f be a proper knot running between −∞ and ∞ in N . With no loss

of generality, we can assume that for all k ∈ {−2, −1, 0, 1, 2..}, k = sup{x ∈
R1|f(x) ∈ Nk−1}. Consider the solid “cone” C ⊂ N with missing “tip”, where
the base of C is D2 × {0}, and whose curved surface is given by the image of
∂D2 ×R1 (here, ∂ denotes “boundary of”) under the map γ : N → N by

γ(x, r, θ) =

(
(x, r, θ) for x < 0
( x
x+1 ,

r
x+1 , θ) for x ≥ 0

.

The interior of C is homeomorphic to (D2 − ∂D) × [ 0,∞), and we let Ci
denote the image of Ni under γ. Let φ: (−∞, 1) → R1 be defined by φ(x) =(
x, x ≤ 0
x

1−x , 0 < x < 1
.We now consider the proper knot g : R1 → N defined

by g(x) =

((
γ ◦ f ◦ φ(x) for x < 1
(x, 0, 0) for x ≥ 1 . Clearly, g is a proper knot. Claim

One: g is equivalent to the “trivial ”proper knot h. Proof of Claim One: One
can use a meridional disk, say D2 × {2}, to comb (or push, as a plunger in a
syringe) the non-trivial parts of g to −∞. This is Proposition 2.2 of reference
[3], equations with coordinates can be found in Lemma 2.2 of reference [7] See
Figure 2.
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Figure 2:

Claim Two: g is equivalent to the proper knot f . Proof of Claim Two:
Please refer to Figure 3. There is an ambient isotopy H1 : N× [ 0, 1] → N that
takes C1 to N1 so that H1

1 (C1) = γ
−1(C1). Furthermore, we have H1 taking

∪i≥2Ci into N2 as well as fixing Nj , for all j ≤ 0. Note that H1
1 ◦ g defines a

proper knot where Image(H1
1◦g)∩N1 = γ−1(γ◦f◦φ)∩N1 = Image(f◦φ)∩N1 =

Image(f)∩N1. We now composeH1
1 ◦g with an isotopy φ1 which reparametrizes

R1 as follows: φ1 takes (−∞, 0] to (−∞, 0] by the identity map, (0, φ−1(1)] to
(0, 1] via the map φ(x) = x

1−x , (φ
−1(1), 1) to (1, 2) and [1, ∞) to [2, ∞). Let

g1 = H1
1 ◦ g ◦ φ1.

Next we choose an ambient isotopy H2 that fixes Nj for all j ≤ 1, takes
H1

1 (C2) to N2by H2
1 (H

1
1 (C2)) = γ

−1((H1
1 )
−1(H1

1 (C2))), and takes H1
1 (∪i≥3Ci)

into N3. We now compose H2
1 ◦ H1

1 ◦ g1with a reparametrization isotopy φ2

(where φ2 takes (−∞, 1] to (−∞, 1] by the identity map, (1, φ−1
1 ◦ φ−1(2)] to

(1, 2 ] via the map (φ1 ◦ φ), (φ−1
1 ◦ φ−1(2), 2) to (2, 3) and [2, ∞) to [3, ∞)) to

obtain a proper knot g2. Note that f |(−∞, 2] = g2|(−∞, 2]. We repeat this
process to obtain for all positive integers k, a proper knot gk = Hk

1 ◦ gk−1 ◦
φk, where H

k
1 (H

k−1
1 (Hk−2

1 (...(H1
1 (Ck))..)) = γ−1((Hk

1 ◦ Hk−1
1 ... ◦ H1

1 )
−1(Hk

1 ◦
Hk−1

1 ... ◦ H1
1 )(Ck) and φk is an appropriate reparametrization isotopy. Note

that f |(−∞, k] = gk|(−∞, k].
Now concatenate the proper isotopies H1,H2, H3, ...Hk... in the following

way: let σk be a mapσk : [ 0, 1 ] [ k−1
k ,

k
k+1 ] (k ∈ {1, 2, 3, ...})defined by σk(t) =

(k)(k + 1) t + k−1
k for t ∈ [ 0, 1]. We can then define a proper isotopy H :

[ 0, 1]×R1N by H(σk(t), x) = Hk(t, x) for t ∈ [k−1
k ,

k
k+1) and H(1, x) = f(x).
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It is immediate that H is continuous on [ 0, 1) × R1. To see that H is
continuous on [1− ², 1]×R1 (² small and positive), let x ∈ R1 be given. There
exists a positive integer k so that x ∈ [k, k + 1]. Note that for all integers
n ≥ 1,and y ≥ x, gk+1(y) = gk+n(y) = f(y). Hence H is continuous. We now
check that H is proper: given X ⊂ N, X compact, there exists integers i and j
so that X ⊂ ∪i≤k≤jNk. Note that for k ≥ j+1, (Hk+1)−1(X) = f−1(X). So,
H−1(X) =
(H|{[k+1

k+2 , 1]×R1})−1(X) ∪ (H|{[0, k+1
k+2 ]×R1})−1(X) =

f−1(X)∪ (H|{[0, k+1
k+2 ]×R1})−1(X) which is compact since it is the union of

two compact sets. ¤
We get the immediate corollary:
Corollary 3.2. Let f e a proper knot in a 3-manifold M . If the image of

f runs between the opposite ends of a D2 × R1 which is properly embedded in
M, then f is equivalent to a piecewise linear proper knot.
Corollary 3.2 leads to a classification theorem for proper knots running be-

tween the opposite ends of the manifold S2 ×R.
Corollary 3.3. Up to orientation and equivalence, there is a unique proper

knot running between the opposite ends of S2 ×R1.
Proof. Let f be a proper knot running between the opposite ends of S2×R1.

By using a general position argument with a p. l. approximation of f , we can
find some “collar line” proper knot g whose image is ∗×R1, ∗ ∈ S2. Hence, the
image of f is properly embedded in the properly embedded D2 × R1 which is
formed by the complement of a regular neighborhood of the image of g. Hence
f is equivalent to a p. l. proper knot.¤
Note that it is still an open question whether every proper knot that runs to

and from the same end of S2×R1 is equivalent to a p. l. proper knot; however
such a “non-smoothable” proper knot would have to be wild enough to fail to
pierce a disk at any of its points and badly embedded enough to fail to run in
between the opposite ends of a properly embedded D2 ×R1.
We now use the work of Bothe [1] to give some sufficient conditions for a

proper knot to be smoothable. We say that a proper knot has a normal neigh-
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borhood at f(x) if there exists a 3-ball B containing x in its interior such that
the image of f intersects ∂B in a two point set and f pierces ∂B at both inter-
section points. We say that f is locally homogeneous in M if, given any points
f(x) and f(y), there are subarcs of the image of f, Lx and Ly which contain
f(x) and f(y) in their interiors and an orientation preserving homeomorphism
h : M → M such that h(Lx) = Ly and h(x) = y. f is homogeneous if given
any f(x), f(y), there is an orientation preserving homeomorphism h : M →M
such that h fixes the image of f setwise and h(f(x)) = f(y). It is easy to see
that if f is homogenous, f is locally homogenous.

Theorem 3.4. Suppose f is a proper knot whose image is locally homoge-
nous in M and pierces a disk at one of its points(and therefore all of its points).
Then f is equivalent to a p. l. proper knot.
Proof. We suppose that K1, K2, ....Kn, .. is a compact exhaustion for

M . With no loss of generality, we can assume that f(0) ∈ K1, and that for
all positive integers i, i = min{x ∈ (0,∞)|f(x) ∈ ∂Ki} and −i = max{x ∈
(−∞, 0)| f(x) ∈ ∂Ki}. Because the image of f is locally homogeneous and
pierces a disk at each of its points, the work of Bothe [1] shows that each
point of f(x) has a normal neighborhood of arbitrarily small size. Choose a
covering B1 of f [−1, 1] which includes normal neighborhoods B−1, B1 of f(−1)
and f(1) respectively. In 2.12 and 2.13 of [1] (in the proof of Theorem 1), it is
shown that the elements of B1 can be chosen to be disjoint if they have subarc
of f in common, and to intersect such that their boundaries meet in a single
simple closed curve. Call such a collection “tubular”. Let x1 = min{x ∈
R| f(x) ∈ B−1} and y1 = max{x ∈ R|f(x) ∈ B1}. Then f([−1, 1])misses
f((−∞, x1]) ∪ f([y1,∞)) by a set distance ²1. We can then obtain a new
minimal covering of f([x1, y1]) by normal neighborhoods which are of size less
that ²1/3. Call the union of the covering normal neighborhoods N 0

1.
Now consider the arcs f([y1, 2]) and f([−2, x2]). These arcs have a coveringB2

by normal neighborhoods of size less that ²1/3 which include the normal neigh-
borhoods B−2 and B2 of f(−2) and f(2). N 0

1 and the elements of B2 can
be modified so as to constitute a tubular collection of normal neighborhoods
of f([−2, x1]) and f([y1, 2]). . Define x2 and y2 as before, and note that
f([−2, 2])misses f((−∞, x2]) ∪ f([x2, ∞)) by a set distance ²2. So we can
modify the tubular collection of coverings again so as to ensure that the size of
all elements of B2 are less than min{²1/3, ²2/3}. We can modify N 0

1 again at
its “end elements” (the elements that cover f(x1) and f(y1) to get N1 such that
the covering of f([−2, 2]) remains tubular.
This process can be repeated for all f([−i, i] ⊂ Ki (i ≥ 3). Note that the

building of the tubular cover for f([−i, xi−1]) and f([yi−1, i]) does not require
modifying Nj for j ≤ i−2. Hence, in a manner similar to they way a “defining
torus” was fit around a simple closed curve in [1], we can fit a properly embedded
D2×Rwhere each D2× [−i−δi, i+δi] can be identified withNi (δi > 0). Then
by Theorem 3.1, f is equivalent to the centerline of this embedded D2×R and
thus is equivalent to a p. l. proper knot.
We now present an analogy to Proposition 3.3 of [3] for topological proper

knots.
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Figure 3:

Corollary 3.5. Let f be a proper knot in a 3-manifold M which runs to a
sphere end Γ. Then f is equivalent to a proper knot g which follows a collar
ray ∗× [a,∞) (a > 0) of the collar E associated with Γ. Furthermore, it can be
assumed that the proper isotopy connecting f to g fixes f on M −E.
Proof. By adjustment with an ambient isotopy, it can be assumed that

the image of f misses some collar line w × [ 0, ∞) of E. Then one can take
the complement of the regular neighborhood of w× [ 0, ∞) within Γ to obtain
a properly embedded D2 × [ 0, ∞) ⊂ E ⊂ M that contains the image of a
“selected half” of f , say f |[ 0, ∞). The proper isotopy discussed in Claim
Two of Theorem 3.1 can me used to properly isotope f to a proper knot g which
follows the centerline of the properly embedded D2 × [a,∞) for some a > 0.
Note that this isotopy is topological and could well take a p. l. proper knot to
a wild one. ¤

Example 3.6. f need not run between the ends of a properly embedded
D2 ×R1 ⊂M in order to be smoothable.
Consider the proper knot in R3 shown in Figure 4. One can use techniques

developed by Churchard and Spring in reference [2] to isotope f to a p. l.
proper knot; one merely places a p. l. 3-ball B around one of the tame points
of the image of f in a manner such that (B, B ∩ {Image(f)}) is a standard
ball pair. One then “blows up” B and “combs the knotted part of the proper
knot to infinity”. On the other hand, the image of f does not run between the
opposite ends of any properly embedded p. l. D2 × R1. This can be seen as
follows: if such a D2×R1 existed, there would be some positive integer k such
that the subarcs Ak and A−k would lie on the opposite sides of some properly
embedded disk D2 × {t}. Hence, one could obtain disjoint 3-balls B and B0

such that Ak ⊂ B and A−k ⊂ B0. However, it is shown in reference [4] (p. 166)
that the arcs Ak and A−k are unsplittable.
We now present a classification theorem for proper knots in solid open han-

dlebodies with a deleted point.
Theorem 3.7. Let M 0 be an open solid handle body with at most a countable

number of handles and let M =M 0−B (where B is a p. l. 3-ball in the interior
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Figure 4:

of M). If the ”boundary of the handlebody end” is Γ1 and the ”boundary of
the deleted ball end” is Γ2, then up to orientation and equivalence, there is a
unique proper knot running between Γ1 and Γ2.
Proof. Let G be the one dimensional spine of M 0 and let N(G) denote

a regular neighborhood of G in M 0. Without loss of generality, we may
assume that the collar of the deleted 3-ball end E1 is contained in N(G). By
Corollary 3.5, we may assume that f follows some collar ray of E1 and, by
general position, misses G. Hence, we can assume that the image of f contains
a properly embedded collar ray s × (−∞, a] (s ∈ S2, a < 0) which runs to Γ2

and, for some ² > 0,meets every product level G × (0, ²) transversely at one
point. Consequently, we can assume that Image(f)∩(M 0−N(G)) has at least
one tame point.
It follows from the techniques of Proposition 2.2 of [3] that f can be isotoped

to a p. l. proper knot which, outside of G × (0, ²2), follows a collar ray of
E1,w × ( ²2 , ∞) (w ∈ W1); one uses the collar product structure to comb the
proper knot to infinity at E1. Hence the image of f can be properly isotoped to
a proper knot g so that Im{g} = {w×( ²2 , ∞))∪{s×(−∞, b]} where (s, b) ∈ E2

and (w, ²2) ∈ E1 represent the same point in M.¤
Example 3.8. A proper knot can fail to lie on a properly embedded D2×R1

even if it runs between different ends of an open 3-manifold.
Let M = T2 × R where T is a torus. Think of M as being built up as

∪∞>i>−∞Ti where Ti = T2 × [i, i + 1]. Let T 0i denote the solid torus Ti ∪
{∪∞>j>iTj}. Consider the proper knot f whose image is built up by the arcs
Ai ∪Ci ∪Ei as depicted in Figure 5. Subarcs Ai and Ei cannot be split from
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Ci2

Figure 5:

each other by a ball. Claim: the arc Ri = Ai ∪ Ci ∪ Ei lies in no 3-ball
B ⊂ T 0i . Proof of claim: suppose a ball B existed. Then look at the universal
cover bTobtained by splitting Ti along a meridional disk which intersects both Ai
and Ei in two points near where they “link”. See Figure 6. B lifts to disjoint
preimages ... bB−1, bB0, bB1, bB2....each of which can contain only a finite number
of components of bRi which we denote by bRij . Hence, in bT , there exists an index
k such that bRik is split from bRik+1 by a ball. This is impossible. Therefore
the arc Ri does not lie in any 3-ball in M . Hence it is impossible for the image
of f to be contained in any properly embedded D2 ×R.
We conclude this paper with a result that allows us to smooth certain types

of proper knots that run to a sphere end. Recall that a proper knot f pierces
a disk at p if there exists a p. l. disk D where ∂D links f (in the sense that
∂D cannot be shrunk to a point in the complement of the image of f) and
D ∩ {Imf} = p.

Proposition 3.9. Let f be a proper knot in M3 which pierces a disk at
each of its points, runs to a sphere end Γ2 and whose wild points are isolated.
Then there is a proper isotopy that takes f to a proper knot g where g pierces
a disk at each of its points and g follows a collar ray in Γ2.
Proof. Notice that Proposition 3.9 does not follow from Corollary 3.5 as

the “collar ray following” proper knot promised by the corollary may well fail to
pierce a disk at some of its points. We start our proof by proving the following:

Lemma 3.10. Suppose f is a proper knot which runs from an end Γ1 to
a sphere end Γ2, pierces a disk at each of its points and has n (0 < n < ∞)
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Figure 6:

wild points in Σ× [0,∞) ⊂ E2 where Σ is some level two-sphere in E2. Then
f is properly isotopic to a proper knot f 0 which pierces a disk at each of its
points and has n− 1 wild points in Σ× [0,∞) and follows a collar ray of E2.
Furthermore, if the first point of f to hit Σ× {0} is f(y), f 0 can be chosen so
that f((−∞, y]) = f 0((−∞, y]).
Proof. First note that f is properly isotopic to a proper knot which follows

a collar line of E2. One merely notices that there is a level 2-sphere Σ0 = S2×
{0} of E2 for which f |{f−1(S2 × [0,∞))} contains no wild points and therefore
can be assumed to be a p. l. embedding and then apply Proposition 3.3 of [3]
to “straighten out the end of f” in E2.
Order the wild points of f([y,∞)) and let p = f(x)be the last wild point of

f (f(x,∞) contains no wild points). Then there exists some x1 and x2 where
y < x1 < x < x2 such that f([x1,∞))has only one wild point p and f([x2,∞))
has no wild points. We will show how to construct a proper knot f1 which is
equivalent to f where f1 ((−∞, x1]) = f((−∞, x1]) and f1([x1,∞)) is p. l..
First, we will fix notation. See Figure 7. If D is a disk pierced by f at

p = f(x), Dβ denotes the product D × [−β,β] and D+
β denotes D × [0,β]

and D−β denotes D × [−β, 0]. Assume that D+
β meets f([x, x + δ)) and D−β

meets f((x − δ, x]) for all δ > 0. Claim: There exists a σ > 0 so that D+
σ ∩

f((−∞, x]) = ∅ and D−σ ([x,∞)) ∩ f([x,∞)) = ∅. Proof of claim. Given
σ0 > 0, choose δ > 0 so that f([x − δ, x + δ]) ⊂ Dσ0 . Because D separates
Dσ0 and D meets the image of f only at f(x), f([x− δ, x)) ⊂ D−σ0 . Because f
is proper, f((−∞, x − δ]) ∩Dσ0 is a compact set which misses D. Therefore
there is some ² ≤ ²0 such that f((−∞, x− δ]) ∩D+

σ = ∅. The same argument
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works for D−σ ([x,∞)) and f([x,∞)).
Next choose ² > 0 so thatD+

² ∩f((−∞, x]) = ∅ andD−² ([x,∞))∩f([x,∞)) =
∅ and let t > x be the first point of [x,∞)where f(t)meets ∂(D²+−D). Assume
that the intersection is transverse to ∂(D²+ −D). Choose 0 < ²0 < ² so that
∂D × [−²0, ²0] is disjoint from the image of f and that f([t,∞)) is disjoint from
D+
²0 . Let w = min{y ∈ R, y ∈ f−1(D × {²0}) and s = max{y ∈ R, y ∈

f−1(D+
²0 )}. Note that f−1(D+

²0 ) ⊂ [x, s] ⊂ [x, t] and f(s) ∈ D×{²0}. Suppose
that w 6= s. Since f([w, s]) is a tame arcwhich lies entirely inD+

² , we can assume
that f([w, s])∩ (D× [²0, ²]) is a finite collection of p. l. arcs, say A1, ...Ak, each
of which has a tubular neighborhood. Because f eventually follows a collar
ray to a sphere end Γ2, it is possible to unlink each Ai with the image of f by
repeatedly using the lamp cord trick (the “lassos of reference [3]). We isotope
small subarcs of the Ai along a regular neighborhood of f([s,∞)) to a level two-
sphere which the image of f intersects only once. Then once can, by an ambient
isotopy, take each Ai into the interior ofD+

²0 while leaving f((−∞, x])∪f([s,∞))
fixed. Now f([x, s]) is a properly embedded arc inD+

²0 . Therefore, we can adjust
f by an ambient isotopy so that w = s.
Now we can assume that Im(f) ∩ D × {²0} = s. Next let N 0+ denote a

tubular neighborhood of f([s, ∞)). Then D²0 can be glued to N 0+ in a standard
way as to form a properly embedded D2 × R+ which contains f([x, ∞)) as a
properly embedded ray with f(x)∩(D2×{1}) = p and D2×{0} identified with
D×{−²0} and D2×{1} identified with D×{0}.Denote this D2×R+ by N+.
Recall that ²0 was chosen so that Im(f((−∞, x)) ∩ ∂(D−²0 ) ⊂ D × {−²0}.

Partition D−²0 by level disks D × {− ²0
n } for n ∈ {1, 2, 3, ....} and denote D ×

[−²
0

n ,
−²0
n+1 ] by Dn. There is an ambient isotopy of M which is the identity

outside of a regular neighborhood of N 0+ which takes D1 to D2 × [0, 1] and
∪∞>j≥2Dj into D2× [1, 2). Call this ambient isotopy F1. This is very similar
to the isotopy described in the proof of Theorem 3.1. We can then follow F1

by an ambient isotopy F2 which is the identity on D2 × [0, 1], takes F1(D2) to
D2 × [1, 2] and F1(∪∞>j≥3Dj) into D2 × [2, 3). In a similar way, we define an
ambient isotopy Fk which is the identity onD2×[k−2, k−1], takes Fk−1(Dk) to
D2× [k−1, k] and Fk−1 (∪∞>j≥k+1Dj) into D2× [k, k+1). Concatenating the
isotopies in a standard way and applying a standard reparametrization yields
an isotopy that takes f to a proper knot f 0. Note that if x1 ∈ R is the first
point of f to meet D × {²0} then f((−∞, x1]) = f

0((−∞, x1]) and f 0 has one
less wild point than f . The Lemma is proved. ¤
To prove the Proposition, we start by finding an unbounded set of level two

spheresΣi ∈ E2 arranged in such a way so thatmax(f−1(Σi)) < min(f
−1(Σi+1))

for all i ≥ 1. With no loss of generality, we can assume that the Σi miss the
wild points of f . Let fi denote the proper knot that agrees with f for all
x ≤ max(f−1(Σi)) and follows a collar ray afterward. Note for all j > i > 0, fj
agrees with fi for all x ≤ max(f−1(Σi)).
By applying the Wild Combing Lemma (Lemma 3.10) a finite number of

times, we see that for all i > 0, there exists a proper isotopy F i : R×[0, 1]→M3

such that F i(y, 0) = fi(y), F i(y, 1) = fi+1(y) and for all x ≤ min(f−1(Σi)) and
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t ∈ [0, 1], F i(x, t) = f(x).
We now concatenate the proper isotopies F i to obtain a proper isotopy F

which takes the proper knot f1 to f in the following way: let σi : [ i−1
i ,

i
i+1 ]→

[0, 1] be defined by σi(t) = i(i+1)(t− i−1
i ).Then define F : R× [0, 1]→M by

F (x, t) =

(
F i(x,σi(t)) for t ∈ [ i−1

i ,
i
i+1 ](i ∈ {1, 2, 3....})

f(x) for t = 1
. It is clear that F

is continuous. To see that F is proper we suppose thatK is a compact subset
of M and show that wd(F−1(K)), defined as wd(F−1(K)) = max{t|F (x, t) ∩
K 6= ∅} −min{t|F (x, t) ∩K 6= ∅} is bounded. First note that wd(F−1(K ∩
closure{M − {Σ × [0,∞)}}) = wd(f−1(K ∩ closure{M− {K × [0,∞)}}) be-
cause F (x, t) = f(x) for all ((x, t) where f(x) /∈ Σ × [0,∞)). So we need
only check for K ∈ Σ × [0,∞). Since K is compact, K ⊂ Σ × [0,m] for
some m ∈ {1, 2, ...}. Consequently, there exists an i ∈ {1, 2, 3, ...} such
that for all j ≥ i, (F j)−1(K) = f−1(K). So, wd(F−1(K)) ≤ (wd(f−1(K) +
wd((F 1)−1(K))+...+wd((F i)−1(K))) and therefore is finite. Hence F is proper
and the Proposition is proved.¤

Theorem 3.11. Suppose f is a proper knot which runs from a collared end
E1 to a sphere end E2. Suppose f pierces a disk at all of its points and that
its wild points are isolated. Then f is properly isotopic to a smooth (or p. l. )
proper knot.
Proof. From Proposition 3.9 it can be assumed that f follows a collar ray

in E2.We can also assume that all of the wild points of f lie in E1. Because
the wild points of f are isolated, f has only a finite number of wild points in
Σ×[0,m] ⊂ E1 where Σ is a level surface (possibly of infinite genus). Let σ ⊂ R
denote the smallest closed interval containing f−1(Σ× [0,m]). Then f(σ) is an
embedded arc with only a finite number of wild points. These can be ordered
by the order of their preimages in σ. Call these points x1, x2, ...., xk. First
use Lemma 3.10 to comb the first wild point f(x1) to infinity in E2; the details
are exactly as in Lemma 3.10. Subsequently comb x2, x3, ......xk. Hence, we
can assume that f is equivalent to a proper knot f 0 where f 0(σ) is a smoothly
embedded proper arc. We now use Proposition 3.5 of [3] to properly isotope f 0

to a proper knot which intersects a level surface Σ0×{t} ⊂ Σ× [0,m] in exactly
one point: basically one gets a convenient projection of f 0 and then repeatedly
uses the “lamp cord” trick around a level two-sphere to change all crossings
to undercrossings and then straightens f 0 so as to hit a selected level surface
exactly once.
Next, one uses Σ0 to comb all of the part of f 0 lying in Σ0 × [t,∞) to

infinity in E1 to obtain a proper knot f 00 which follows a collar ray in E1. f 00

is equivalent to f and contains no wild points. ¤
The following corollaries are obtained from Theorem 3.11 and from Theorem

4.3 of reference [3].
Corollary 3.12. Suppose f and g are proper knots which run from a

collared end E1 to a sphere end E2. Suppose f and g pierce a disk at all of
their points and their wild points are isolated. Then if f and g are connected
by a proper homotopy, then they are connected by a proper isotopy. That is, in
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this case, proper homotopy implies proper isotopy.
Proof. Let f 0 denote the smooth proper knot that is equivalent to f and

g0 the smooth proper knot that is equivalent to g. It is easy to see that f 0

is connected to g0 by a proper homotopy H. The Smooth Approximation
Theorem implies that there is a smooth proper homotopy which is homotopic
to H that connects f 0 to g0. It follows from Theorem 4.3 of [3] that f 0 and g0

are connected by a smooth proper isotopy. Hence, f can be connected to g by
a proper isotopy. ¤
We now state a corollary concerning arbitrary topological proper knots which

run from a collared end to a sphere end.
Corollary 3.13. Suppose f and g are proper knots which run from a col-

lared end E1 to a sphere end E2. If f is connected to g by a proper homotopy
and f 0 is a mooth proper knot which is properly homotopic to f and g0 is a
smooth proper knot which is properly homotopic to g, then f 0 and g0 are con-
nected by a smooth, proper isotopy. In other words, if f and g are homotopic,
then their smooth homotopy representatives are equivalent.

4. Questions. Note that the classification of proper knots running be-
tween the opposite ends of S2 × R is complete, both in the smooth and in the
topological category. However, the question of whether all smooth proper knots
which run between the opposite ends of a D2 ×R are equivalent in the smooth
category (i. e., are connected by a smooth proper isotopy) remains open.
The topological proper knot classification for proper knots in manifolds other

than S2 × R or D2 × R is, to the author’s knowledge, unknown. In fact, the
classification of smooth proper knots which run between the opposite ends of
F2 × R (F2 6= S2) (a question posed by Churchard and Spring in [3]) remains
open.
Are there any non-smoothable proper knots? Such a proper knot would

have to either fail to pierce a disk at some of its points, or fail to be locally
homogenous. The proper knot of Example 3.8 is a possible candidate.
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