M223 Self-scored Quiz.
Use any valid technique.

1. \(\int_C \vec{F} \cdot d\vec{r} \) where \(C \) is the square with vertices \((0,0), (1,0), (1,1)\) and \((0,1)\) taken in the counterclockwise direction and \(\vec{F} = x^2y\hat{i} + e^x\hat{j} \)

Here it would be a good idea to use Green’s theorem (so we can merely integrate over a rectangle)
\[
\frac{\partial Q}{\partial x} = e^x, \quad \frac{\partial P}{\partial y} = x^2 \rightarrow \int_C Pdx + Qdy = \iint_{\Omega} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \int_0^1 \int_0^2 e^x - x^2 dy dx = \int_0^1 \left[e^x - \frac{1}{2}x^3 \right] = e - \frac{1}{2} - 1 = e - \frac{4}{3}
\]

2. \(\int_C \vec{F} \cdot d\vec{r} \) where \(C \) is the circle \(x^2 + y^2 = 1 \) taken in the counterclockwise direction and \(\vec{F} = < \frac{y}{x^2+y^2}, -\frac{x}{x^2+y^2} > \)

Here we CAN’T use Green’s theorem as \(\vec{F} \) is not smooth at \((0,0)\) and \(C \) encloses \((0,0)\).

So we compute \(\int_C \vec{F} \cdot d\vec{r} = \int \frac{y}{x^2+y^2} dx - \frac{x}{x^2+y^2} dy \) directly. Let \(x = \cos(t), y = \sin(t) \)

Then \(0 \leq t \leq 2\pi \) and \(dx = -\sin(t) dt, dy = \cos(t) dt \) and \(x^2 + y^2 = 1 \)

So:
\[
\int_C \frac{y}{x^2+y^2} dx - \frac{x}{x^2+y^2} dy = \int_C \frac{\sin(t)}{1} (-\sin(t)) - \frac{\cos(t)}{1} \cos(t) dt = \int_0^{2\pi} -\sin^2 t - \cos^2 t dt = -\int_0^{2\pi} 1 dt = -2\pi
\]

3. \(\int_C \vec{F} \cdot d\vec{r} \) where \(C \) is the curve that runs from \((0,0)\) to \((1,1)\) along \(x = \sqrt{y} \) and then back to \((0,0)\) along the path \(x = y^2 \) and \(\vec{F} = < 2x\sin y - e^x, x^2 \cos(y) + \tan(y) > \)

This looks messy. Green’s Theorem applies and so we get
\[
\int_C \vec{F} \cdot d\vec{r} = \int_C Pdx + Qdy = \iint_{\Omega} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA, \quad \frac{\partial Q}{\partial x} = 2x \cos(y), \quad \frac{\partial P}{\partial y} = 2x \cos(y)
\]

So
\[
\int \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dA = \int \int_{\Omega} 0 \, dA = 0.
\]

Note: \(\vec{F} \) is a conservative vector field and Green’s theorem will always pick that up (in the plane).

4. \(\int_C f(x,y)ds \) where \(f(x,y) = x + y^2 \) and \(C \) is the path that consists of line segments running from \((0,0)\) to \((1,0)\) and then to \((1,1)\).

We need to take this in two segments (this is an integral of a scalar function, NOT a vector field integral)
Segment 1: \((0, 0)\) to \((1, 0)\) has \(x(t) = t, y(t) = 0, x'(t) = 1, y'(t) = 0 \rightarrow ds = \sqrt{1^2 + 0^2}, 0 \leq t \leq 1 \)
\[
\int_{c_1} x + y^2 ds = \int_0^1 (t + 0^2) \sqrt{1 + 0^2} \, dt = \int_0^1 t \, dt = \frac{1}{2}
\]
Segment 2: \((1, 0)\) to \((1, 1)\) \(x(t) = 1, y(t) = t, x'(t) = 0, y'(t) = 1 \rightarrow ds = \sqrt{0^2 + 1^2} \)
\[
\int_{c_2} x + y^2 ds = \int_0^1 (1 + t^2) \sqrt{1 + 0^2} \, dt = \left| \int_0^1 t \, dt + \frac{1}{3} t^3 \right| = \frac{4}{3}
\]
5. \(\int_C (y^2 + 2xy)dx + (y^2x)dy\) where \(C\) is the circle \((x - 2)^2 + (y + 3)^2 = 4\) taken in the standard counterclockwise direction.

Green's Theorem applies and is by far the easier way. \(\int_C Pdx + Qdy = \int \int_\Omega \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \, dA\)

So \(\frac{\partial Q}{\partial x} = y^2, \frac{\partial P}{\partial y} = x^2 - 2x \rightarrow \int_C (yx^2 + 2xy)dx + (y^2x)dy = \int \int_\Omega y^2 - x^2 + 2xdA\)

Now to handle our region, we switch to modified polar coordinates:
\(x - 2 = 2r \cos(\theta), y + 3 = 2r \sin(\theta) \rightarrow x = 2r \cos \theta + 2, y = 2r \sin \theta - 3\)

\[J = \left| \det \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{bmatrix} \right| = \left| \det \begin{bmatrix} 2 \cos \theta & -2r \sin \theta \\ 2 \sin \theta & 2r \cos \theta \end{bmatrix} \right| = |4r \cos^2 \theta + 4r \sin^2 \theta| = 4r\]

\[\int \int_\Omega y^2 - x^2 + 2xdA = \int_0^{2\pi} \int_0^2 (2r \sin \theta - 3)^2 - (2r \cos \theta + 2)^2 + 2(2r \cos \theta + 2))4r \, dr \, d\theta\]

\[\int_0^{2\pi} \int_0^2 (4r^2 \sin^2 \theta - 12r \sin \theta + 9 - (4r^2 \cos^2 \theta + 8r \cos \theta + 4) + 4r \cos \theta + 4))4r \, dr \, d\theta = \]

\[4 \int_0^{2\pi} \int_0^2 4r^3(\sin^2 \theta - \cos^2 \theta) - 12r^2 \sin \theta - 4r^2 \cos \theta + 9r \, dr \, d\theta = \]

\[4 \int_0^{2\pi} \int_0^2 4r^3(\sin^2 \theta - \cos^2 \theta) - 4r^3 \sin \theta - \frac{4}{3} r^3 \cos \theta + \frac{9}{2} r^2 \, dr \, d\theta = \]

\[4 \int_0^{2\pi} 16(\sin^2 \theta - \cos^2 \theta) - 32 \sin \theta - \frac{32}{3} \cos \theta + 18 \, d\theta = \]

\[4 \int_0^{2\pi} 16(\cos(2\theta)) - 32 \sin \theta - \frac{32}{3} \cos \theta + 18 \, d\theta = 4 \cdot 2\pi \cdot 18 = 144\pi \]